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Executive summary 
The deliverable D3.2, “Advanced Internal and External Sensing System.v1,” presents the 

technical advancements and initial validation of the integrated internal and external sensing 

systems developed within the AutoTRUST project, which aims to advance the state of the art in 

autonomous, safe, and inclusive mobility. 

The internal sensing system is designed to ensure passenger safety, comfort, and personalized 

interaction inside vehicles. The system combines visual, audio, and environmental sensors to 

provide a comprehensive view of the cabin and its occupants. Key features include real-time 

monitoring of driver attention and well-being, detection of risky behaviors and abnormal 

sounds, as well as privacy-preserving facial and emotion recognition. An intelligent virtual 

assistant interprets data from multiple sources and enables natural, context-aware interactions 

between users and the vehicle, all running locally for enhanced privacy and reliability. 

Furthermore, environmental sensors and advanced simulation models are deployed to 

continuously assess and optimize air quality and thermal comfort, ensuring a healthy and 

comfortable cabin environment for all passengers. 

The external sensing system supports safe and resilient mobility by enabling vehicles to 

accurately perceive and understand their surrounding environment, both individually and 

cooperatively. The system delivers reliable detection and assessment of road conditions, 

including the identification and prioritization of hazards such as potholes and damaged 

infrastructure. This information is intuitively conveyed to drivers using advanced visualization 

techniques, such as augmented reality overlays, which provide early and easily interpretable 

warnings. Crucially, AutoTRUST enables vehicles to securely share information about hazards, 

road conditions, and dynamic objects with each other and with traffic infrastructure. This 

collaborative approach extends the awareness of each vehicle beyond its own sensors, 

improving responsiveness and safety in complex, dynamic environments. By allowing vehicles 

to collaboratively learn from local data without exchanging sensitive information, AutoTRUST 

improves perception and localization accuracy while ensuring compliance with data privacy 

requirements. The use of privacy-preserving techniques, such as secure aggregation and 

encryption, is a core part of the system, reflecting a strong commitment to user trust and data 

protection. 

All developed modules have been validated using a combination of real-world data collection, 

custom test scenarios, and large-scale simulation environments. The deliverable also outlines 

ongoing and future work towards full-scale pilot demonstrations and continued integration of 
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user feedback, with the goal of delivering a robust, user-centric, and ethically sound 

autonomous mobility platform. 

In summary, D3.2 establishes the foundation for advanced, trustworthy sensing and perception 

systems in autonomous vehicles, combining technical excellence with a user-centered, privacy-

first approach. The work described in this deliverable directly contributes to safer, more 

comfortable, and more inclusive mobility solutions for all road users. 

It should be underlined that this is the first version of the Deliverable and the AutoTRUST 

sensing technologies, which will continue to evolve in the second period of the project and will 

be described in its final version of the Deliverable D3.4 “Advanced internal and external sensing 

system.v2”, due to M29, and in accordance with the project’s description of work. 
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1. Introduction 
The Deliverable D3.2, “Advanced Internal and External Sensing System.v1,” provides a 

comprehensive overview of the sensing architectures, methodologies, and initial results 

achieved within the AutoTRUST project. This document describes the core technologies that 

enable autonomous vehicles to perceive, understand, and respond to both the in-cabin 

environment and the external driving scene, supporting the project's vision for safe, inclusive, 

and resilient mobility. The primary objective of this deliverable is to present the design and 

implementation of integrated sensing solutions that advance user safety, comfort, and trust in 

autonomous systems. The report covers a wide range of technical topics, including occupant 

monitoring, driver attention analysis, environmental quality assessment, road condition 

detection, cooperative awareness, and privacy-preserving data management. Both the internal 

and external sensing systems are discussed in detail, with a focus on their architectural 

foundations, technical innovations, and real-world validation. This deliverable is intended as a 

reference for project partners, reviewers, and stakeholders who seek to understand the state-

of-the-art sensing technologies developed in AutoTRUST, their role within the overall project 

architecture, and their contribution to the project’s strategic objectives. The document also 

establishes the foundation for future development, large-scale pilot deployments, and the 

continuous improvement of user-centered autonomous mobility solutions. 

 

1.1. Purpose and structure of the document 

The purpose of this document is to provide a detailed account of the methodologies, 

technologies, and results underpinning the development of the advanced internal and external 

sensing system within the AutoTRUST project. This deliverable aims to guide both the technical 

implementation and the integration of sensing solutions that ensure safe, inclusive, and user-

centric autonomous mobility. 

This report documents the activities and decisions taken throughout the design, development, 

and validation phases of the sensing system. It captures the rationale behind key technical 

choices, highlights innovative approaches to occupant and environment monitoring, and sets 

out the measures adopted to address privacy, security, and ethical considerations. 

The structure of the document is as follows: 

• Section 1 introduces the objectives and relevance of the deliverable, providing an 

overview of its purpose and intended audience. 
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• Section 2 presents the internal sensing system for in-cabin monitoring, including 

occupant safety, comfort analysis, behavioral understanding, and environmental 

sensing. 

• Section 3 describes the external sensing system, covering approaches for contextual 

scene analysis, road condition assessment, cooperative perception, and multi-agent 

information sharing. 

• Section 4 addresses privacy, security, and data trustworthiness within the sensing 

system, outlining both technical and organizational safeguards, with a focus on privacy-

preserving learning and secure data aggregation. 

• Section 5 summarizes the key conclusions and sets the direction for ongoing work and 

future milestones. 

Each section is organized to provide both a high-level overview and detailed technical insights, 

ensuring the document is accessible to a diverse readership, including technical experts, project 

partners, and broader stakeholders. The report also serves as a foundational reference for 

subsequent deliverables and the continuous improvement of the AutoTRUST platform. 

1.2. Intended Audience 

The Deliverable D3.2, “Advanced Internal and External Sensing System.v1,” is intended for both 

public use and for the AutoTRUST consortium, including all project partners and affiliated 

stakeholders. It serves as a comprehensive reference, providing detailed guidance on the 

implementation and integration of advanced sensing systems developed within the project. The 

document is designed to support technical contributors, project managers, and consortium 

members throughout the project’s duration, ensuring a shared understanding of 

methodologies, system architectures, and validation approaches. In addition, it provides 

transparency and accountability for external reviewers, European Commission evaluators, and 

the wider research and innovation community interested in state-of-the-art solutions for 

autonomous, inclusive, and resilient mobility. 

1.3. Interrelations 

The AutoTRUST project brings together a multidisciplinary consortium with expertise spanning 

academia, industry, and research organizations. This diversity ensures a holistic approach to 

developing advanced, AI-driven solutions for personalized, inclusive, and resilient connected 

and automated mobility (CCAM). With sixteen partners across ten EU member states and 

associated countries—including Norway, Switzerland, the United Kingdom, Korea, and Japan—
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the project leverages a wide range of perspectives and resources to address challenges related 

to security, privacy, well-being, health, and user assistance in automated vehicle environments. 

Within the project structure, AutoTRUST is organized as a Research and Innovation Action (RIA), 

segmented into six interconnected work packages (WPs), each further divided into targeted 

tasks. The internal and external sensing systems described in this deliverable (D3.2) form a 

cornerstone for several technical and user-centered activities across these work packages. 

Specifically, the methodologies and results presented here build on the user requirements and 

best practices established in earlier deliverables, and provide essential technological input for 

the development and integration of perception, decision-making, and user interaction 

components addressed in subsequent work packages (WP4, WP5). Furthermore, the sensing 

architectures and privacy frameworks detailed in D3.2 support the system-level evaluation, 

demonstration, and validation activities planned for later stages of the project (WP5). This 

ensures that the sensing systems are not only technically robust but also aligned with broader 

project objectives relating to inclusiveness, safety, and trustworthiness. 

Overall, D3.2 is positioned at the intersection of user needs, technological innovation, and 

ethical compliance, and serves as a key reference point for ongoing collaboration and 

knowledge exchange among AutoTRUST partners. 
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2. Internal sensing system of in-cabin monitoring for 

occupant safety and comfort 
In the pursuit of enhanced safety, comfort, and personalization within automotive 

environments, the integration of intelligent in-cabin monitoring systems has become a focal 

point of research and development. Towards this end, the research and technological 

developments of AutoTRUST focus on multi-modal monitoring and advanced AI-driven 

analytics. The system architecture encompasses multiple interconnected modules that work 

synergistically to provide real-time assessment of occupant behavior, environmental conditions, 

and potential safety risks. Through the integration of computer vision, artificial intelligence, 

sensor networks, and advanced signal processing techniques, these systems create a holistic 

understanding of the cabin environment that extends far beyond traditional monitoring 

capabilities. 

The following sections detail the technical aspects of the system, focusing on the adopted 

methodologies, performance characteristics, and practical applications of each component. 

Specifically, Section 2.1 explores the cabin environment and occupant behaviours through 

strategic sensor placement and machine learning techniques, addressing areas such as facial 

recognition, emotion and distraction detection, and virtual assistance. Section 2.2 highlights 

innovative approaches for saliency-based obstacle detection and augmented reality solutions 

for proactive hazard awareness. Section 2.3 investigates air quality and thermal comfort using 

smart sensors and computational fluid dynamics, Section 2.4 introduces visual analysis methods 

leveraging object detection and cutting-edge vision-language models, while, finally, Section 2.5 

presents our concluding remarks.  

 

2.1. Analysis of cabin environment and occupant behaviors 

The in-cabin monitoring architecture of AutoTRUST, presented in Figure 1, integrates multiple 

sensor modalities with AI-driven analytics to ensure driver and passenger safety, comfort, and 

inclusiveness. The system combines side- and front-facing cameras, a microphone array, and an 

event-based sensor, which continuously capture multimodal data streams inside the vehicle. 

These streams are processed on the Jetson Orin AGX platform, where lightweight and 

optimized models execute real-time tasks such as face identification, object and forgotten-item 

detection, abnormal sound recognition, and facial emotion analysis. While drowsiness 

detection and event-based driver distraction detection are already developed and running on 
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edge, they have not yet been connected to the LLM reasoning layer—a task that is scheduled 

for future integration. All other detections are fused through a shared memory layer, enabling 

downstream reasoning modules and a large language model (LLM) functioning as a virtual 

assistant. The LLM supports natural interaction via speech-to-text and text-to-speech modules, 

offering context-aware alerts, feedback, and personalized communication. Camera and 

microphone placement will be further analyzed in the following subsections, while the event-

based sensor—being the newest addition to the system—will have its optimal positioning 

determined during the next demo. This architecture is fully edge-deployed to meet low-latency 

and privacy requirements, while maintaining scalability for different cabin setups and use cases. 

 

Figure 1: Architecture of the in-cabin monitoring system 

2.1.1. Camera placement 

In the current implementation two primary cameras are deployed to monitor the driver’s state 

and behaviour. The front-facing driver camera, mounted on the dashboard or windshield, is 

used to continuously assess the driver's head pose, gaze direction, eye openness, and facial 

expressions. This camera supports the face identification, facial emotion recognition, 

drowsiness detection and object detection modules. Complementing this, a side-facing camera, 

typically mounted at the passenger-side corner of the windshield, provides an additional angle 

on the driver's face and upper body. In the implementation showcased at EUCAD, a 360-degree 

camera was also installed, intended for use in future deployments, particularly in larger vehicles 

such as buses. The inclusion of such a camera can further enhance monitoring coverage and 

improve the overall robustness of the system’s results. The figures (Figure 2, Figure 3, Figure 4) 

below illustrate the camera placement used in the two demonstration setups. 
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Figure 2 Front-facing camera - EUCAD demo 

2.1.2. Microphone placement 

The current implementation includes two microphones, each serving a distinct function within 

the system. The first microphone is dedicated to abnormal sound detection and is strategically 

placed near the Jetson Orin hardware to ensure clear audio capture of environmental sounds 

from within the vehicle cabin (Figure 4). Its positioning allows for efficient real-time processing 

of potentially critical audio cues mentioned in the Abnormal Sound Event detection module. 

The second microphone is used for interaction with the Virtual Assistant System (VAS). In the 

showcased setup, this is the built-in microphone of a laptop, enabling basic voice interaction 

capabilities between the user and the assistant. 
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Figure 3: Side camera - EUCAD demo 

 

Figure 4: Setup of the first demo 
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2.1.3. In-cabin object detection 

The object-detection module continuously monitors the in-cabin optical environment to detect 

occupants and their personal items—person, phone, bag, laptop—in real time within a vehicle 

cabin, all while operating under a 15 W power envelope. One-stage YOLO detectors have been 

shown to outperform two-stage frameworks (e.g., Faster R-CNN) on both latency and accuracy 

when deployed on automotive edge hardware. Moreover, the YOLOv81 architecture’s anchor-

free head and CSP backbone deliver higher mAP than YOLOv5 without increasing model size. 

Accordingly, the COCO-pretrained YOLOv8-s model was adopted and leveraged only INT8 post-

training calibration—avoiding any on-device training—while still supplying downstream 

subsystems with safety-critical context.  

Model Architecture   

The detector core is Ultralytics YOLOv8-s1, an 11 M-parameter network that fits entirely in the 

on-chip SRAM of modern embedded GPUs. The architecture of the model is presented in the 

Figure 5. We export the model from PyTorch to ONNX (FP32), then compile it into an INT8 

TensorRT engine using ~500 representative in-cabin frames for calibration. At inference, the 

network outputs bounding-box coordinates, objectness scores, and class logits for the five 

target categories. 

Pre-processing   

Each inference cycle begins with a 640 × 480 RGB frame, which is letterboxed to 640 × 640 (to 

preserve aspect ratio), normalized to the [0, 1] range, and reshaped into a batch of size N with 

dimensions 3 × 640 × 640 in FP32. A zero-copy CUDA pipeline then feeds this tensor directly 

into the TensorRT engine bindings, eliminating redundant host–device transfers and ensuring 

minimal latency on Jetson-class hardware. 

Deployment  

The in-cabin object-detection pipeline runs on the Jetson Orin AGX via ONNX Runtime with 

CUDA support. Each 640 × 480 frames from the inward-facing camera are processed by the 

ONNX-format YOLOv8-s1,  classifier which outputs class predictions and confidence scores in 

real time. These detections are written to the shared memory fusion layer, where downstream 

perception and reasoning modules—including those that leverage the onboard LLM—consume 

them to drive driver-alert functionality. Additional features such as seat-occupancy monitoring 

and forgotten-object detection will be integrated in the next stages of development, especially 

 
1 https://docs.ultralytics.com/models/yolov8/ 

https://docs.ultralytics.com/models/yolov8/
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in vehicles where these functions are particularly useful, such as buses. In Figure 6, the object 

detection results from the first demo are presented. 

 

Figure 5: YOLOv8 Architecture2 

 
2 https://docs.ultralytics.com/models/yolov8/ 
 

https://docs.ultralytics.com/models/yolov8/
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Figure 6: Person and Cellphone Identification from the first demo 

2.1.4. Facial recognition for passengers’ identification 

The facial recognition module allows for real-time detection and identification of previously 

known individuals, and supports personalization, access control, and driver profile 

management. The facial recognition module runs continuously and fully offline, on embedded 

hardware, which enables privacy-preserving identification that requires no internet connection, 

and no cloud inference.  

Method Overview 

The identification module runs a two-stage face-based identification pipeline that has been 

optimized for real-time performance on edge platforms: 
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• Face Detection 

The detection of faces is performed using a modified version of the Multi-task Cascaded 

Convolutional Neural Network (MTCNN) pipeline [1] [2], accelerated using CUDA and 

tuned for in-cabin operation. The detection stage provides tight bounding boxes along 

with facial landmarks, which are used to align and crop face images (see Figure 7). 

 

Figure 7: Face detection and preprocessing using the modified MTCNN pipeline. From left to right: original image, detected face 
with bounding box and facial landmarks, and cropped/aligned face used for embedding 

• Face Embedding and Matching 

The cropped faces are resized to 160×160 pixels and passed to an ONNX-exported 

version of FaceNet (Inception-ResNet v1) [2], providing a 512-dimensional embedding 

vector for each face. This model uses pretrained weights from VGGFace2, which 

provides diverse coverage of poses, ages, and lighting conditions, ensuring robust 

embeddings for identification tasks (see Figure 8). 

 

Figure 8: Example images from the pretraining datasets (VGGFace2) showing variations in pose, age, and illumination 

During enrolment, the occupants are enrolled by creating prototype embeddings by averaging 

multiple samples of a person in multiple poses and lighting conditions. During inference, the 

incoming embeddings are compared to the stored prototypes using cosine similarity, and an 
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identification decision is made if the similarity is greater than a calibrated threshold of 0.55, 

which was selected to balance false leaves and false rejects. 

 

Figure 9: Face embedding extraction and matching using FaceNet (Inception-ResNet v1). The cropped/aligned face (left) is 
converted into a 512-dimensional embedding vector (middle) and compared to stored prototypes using cosine similarity to 

produce an ide 

Evaluation and Performance 

The module went through evaluation in genuine deployment settings with pre-enrolled 

occupants in different seated, postures, and ambient illuminations. The performance aspects, 

after training, were: 

• Recognition accuracy: 96.5% (across seated occupants, with varied poses) 

• False acceptance rate (FAR): < 2% 

• False rejection rate (FRR): < 4% 

• Inference latency: < 50 ms per identity (Jetson Orin, CUDA-accelerated) 

• Throughput: up to 10 identity checks per second 

The system also performs well with head tilt, partial occlusion (e.g., eyeglasses, facemasks), and 

illuminated from the side. The cosine similarities from recommendation works well on a well-

separated embedding space and the rapid matching allows extensibility to new users and little 

re-training. 

Deployment and Integration 

The deployment is fully wrapped on the NVIDIA Jetson Orin AGX platform built with ONNX 

Runtime. All computations happen on the edge with no facial images or embeddings being 

transmitted anywhere. Enrolment as well as the creation of prototypes is also via a secure local 

interface. 

Output identity tags are: 

• Published to the shared fusion layer 
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• Used to facilitate personalized in-cabin experiences (e.g., music preferences, seat 

configuration) 

• Logged (with permission) for occupancy analysis and session continuity 

The system is designed for plug-and-play extensibility. New users can be enrolled by capturing a 

short sequence of faces and generating a profile and does not require retraining of the base 

FaceNet model. 

2.1.5. Facial Emotion Recognition 

The facial emotion recognition module allows the in-cabin system to detect the emotional state 

of occupants in real-time. Recognizing emotions, such as happy, sad, or angry, is possible, and 

the in-cabin system can use this knowledge to provide further context to the virtual assistant or 

vehicle control layer helping the system adapt accordingly. Furthermore, the module supports 

inclusivity and personalization for the autonomous vehicle (AV), by raising user awareness for 

their well-being in the vehicles environment. 

Dataset and model Selection 

Moreover, the emotion recognition module and model are based on the ResEmoteNet 

architecture [3], a convolutional neural network designed for general and robust expression 

classification in non-constrained environments (see Figure 10). The model has been pre-trained 

on the AffectNet-7 [4] dataset which includes over one million labeled facial images categorized 

into seven universal emotion classes: happy, surprise, sad, anger, disgust, fear, and neutral. The 

model has been pre-trained on the AffectNet-7 dataset, which includes over one million labeled 

facial images categorized into seven universal emotion classes: happy, surprise, sad, anger, 

disgust, fear, and neutral (see Figure 11). 

Additionally, there was concern over proper testing and realization within the in-cabin 

environment and to avoid overfitting any emotion or facial datasets not recorded within a 

vehicle environment, testing of the model was completed based on cabin footage collected 

during integration tests on the system, with no fine-tuning completed. 
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Figure 10: Overall architecture of the ResEmoteNet model 

 

Figure 11: Example emotion-labeled faces from the AffectNet-7 dataset (seven universal classes). 

Methodology 

The ResEmoteNet model includes: 

• Several 3 x 3 convolutional layers featuring squeeze-and-excitation (SE) gating for 

channel-wise attention 

• Residual connections [5] for support stable gradient propagation 

• Adaptive pooling for variable sized images 

• A final softmax classifier over the 7-class output space 

The face regions are detected via the MTCNN pipeline, cropped to a resolution of 160 x 160, 

then normalized, and passed through the ResEmoteNet model as presented in the Figure 12. 

The face regions are detected via the MTCNN, cropped to a resolution of 160 x 160, then 

normalized, and passed through the ResEmoteNet model. The predicted emotion probabilities 

were straightforwardly smoothed using a temporal majority-vote method, across a 2-second 

sliding window, to eliminate flickering predictions. 
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Figure 12: Facial Emotion Prediction Pipeline. 

Evaluation and Performance 

The ResEmoteNet model was evaluated on the AffectNet-7 validation split, and obtained the 

following performance: 

• Top-1 accuracy: 72.9% 

• Balanced F1 score: 0.71 

• Inference latency: ~30 ms per frame (ONNX Runtime, Jetson Orin AGX) 

• Memory footprint: < 150 MB (quantized FP16) 

In practice, the model was able to work robustly in varying lighting conditions and head poses, 

especially when the side-facing camera input was included.  

Deployment and Integration 

The facial emotion recognition module is deployed as an ONNX model containerized via Docker 

and executed on the Jetson Orin AGX platform. It publishes emotion scores per detected face to 

the central fusion layer, which in turn makes these signals available to downstream 

components such as: 

• The virtual assistant (Section 2.1.6), enabling context-aware interaction 

• The driver behavior monitoring, which can correlate emotion with distraction 

• The risk detection system, supporting escalation strategies (e.g. repeated sadness or 

fear triggers notifications) 

This module is designed to be fully privacy-preserving: all processing is done locally, no face 

images are stored, and all outputs are anonymized confidence scores. 

2.1.6. Driver Distraction Detection 

The driver distraction detection module allows for monitoring upper body and hand 

movements over a lengthy period in order to find behaviours that would ascertain that the 

driver is not driving safely. This module is capable of processing and delivering results in real 
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time by utilizing a side-mounted camera and an embedded inference pipeline, which is part of 

the driver behaviour analysis framework. 

Dataset Description 

To train the distraction detection model, a custom in-cabin dataset was created. This dataset 

was generated using a combination of front-facing and mid-to-side view cameras, capturing 

synchronized multi-view video data in real-time. The mid-to-side view cameras introduced 

subtle angular variations to enhance the model's ability to generalize across different viewing 

angles. 

The dataset consists of 653 annotated video clips, each lasting 3 seconds (72 frames), as 

detailed in Table 1. These clips were captured under diverse lighting conditions and involved 

multiple subjects. Each video clip was annotated according to six distinct behavior classes: 

normal driving, texting, phone calls, drinking, smoking, and reaching (e.g., toward the 

dashboard or side compartments). 

To ensure dataset variability, camera angles, occupant clothing, object appearances, and 

seating positions were deliberately diversified. Additionally, every frame within each video clip 

was annotated to support precise clip-level supervision during training. Representative frames 

for three behavior classes and multiple individuals are shown in Figure 13. 

Table 1:  Distribution of annotated behaviour classes in the custom in-cabin distraction dataset. 

Behavior Class Number of Videos Percentage (%) Duration (mm:ss) 
Drinking 103 15.77% 05:09 

Safe Driving 124 18.99% 06:12 

Smoking 62 9.49% 03:06 

Talking on Phone 104 15.93% 05:12 

Talking to Passenger 129 19.75% 06:27 

Texting on Phone 131 20.06% 06:33 

Total Duration 32 minutes and 39 seconds 
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Figure 13: Example frames from the custom in-cabin distraction dataset. Each column shows a behaviourbehaviour class 
(Drinking, Texting, Safe Driving) and each row shows a different individual performing that behaviourbehaviour. 

Methodology 

The distraction detection model is seeded on top of MoViNet-A3, a lightweight spatiotemporal 

model for video optimized for edge inference, an optimal use of computer vision at the edge 

(see Figure 14). The model was designed to take in sequences of RGB frames and learn features 

based on motion content in the video to provide decision-making information across similar 

upper-body gestures temporally. 

Notable model features: 

• Temporal convolutional layers to encode motion 

• Depth-wise separable convolutions for reduced computations  
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• Partial fine-tuning on the last layers of training the dataset for training purposes only 

• Input resolution: 224×224 RGB 

• Sequence length: 72 frames (3 seconds) 

Data augmentations: random cropping, brightness, frame jitter, and horizontal flipping to help 

with generalization. 

 

Figure 14: MoviNet Architecture 

Training 

Splitting the dataset into training and testing subsets was accomplished through an 80/20 per-

class random shuffle. This reproducible process guarantees balanced class representation in 

both sub-sets and protects against data "leakage" for consistent and reliable evaluations. The 

model was trained using TensorFlow and exported to ONNX format for deployment.  

Training configuration: 

• Optimizer: Adam 

• Learning rate: 0.0002 

• Batch size: 8 

• Epochs: 20 

• Loss: Categorical cross-entropy 

• Hardware: NVIDIA RTX 4090 GPU (training), Jetson Orin AGX (inference) 

In Figure 15, the training validation performance was stable around epoch 12 with the early 

stopping and learning rate reduction used to counter overfitting, and the best model was 

exported to TensorRT (the optimal format for embedded deployment). 
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Figure 15: Training and deployment configuration for the distraction detection model. 

Experimental Results 

The model was tested on a held-out test set with the following metrics: 

• Clip-level classification accuracy: 89% 

• Average F1-score (macro): 0.88 

• Per-class F1 range: score ranged ±5% from the mean 

• Inference latency: < 100 ms per video clip (on Jetson Orin AGX) 

• Memory footprint: < 300 MB (FP16) 

                            

Figure 16: Confusion matrix illustrating the model’s classification performance across behaviour classes on the test set 
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The model exhibited high temporal stability and correctly differentiated visually similar 

behaviours, such as "reaching" vs. "drinking", especially with the combination of inputs from 

front and side camera views. Confusion was lowest for high-motion behaviours (such as phone 

use), and highest for overlapping gestures (such as reaching vs. adjusting) as demonstrated in 

Figure 16 and Table 2. 

Table 2: Per-class performance metrics of the distraction detection model on the test set. 

Class Precision Recall F1 Score Accuracy 
Correct 
/ Total 

Drinking 1.00 1.00 1.00 1.00 20 / 20 

Safe_driving 0.89 0.96 0.92 0.96 24 / 25 

Smoking 1.00 1.00 1.00 1.00 11 / 11 

Talking_on_Phone 1.00 1.00 1.00 1.00 20 / 20 

Talking_to_passenger 0.96 0.88 0.92 0.88 23 / 26 

Texting_on_phone 1.00 1.00 1.00 1.00 26 / 26 

Deployment and Integration 

The whole distraction detection module is run solely on the Jetson Orin AGX and was 

containerized to allow module integration; it takes a live feed from the side-facing driver 

camera, and outputs class probabilities every 3 seconds. 

The predictions of behaviour from this module will: 

• Be forwarded to the risk evaluation layer 

• Be used in real-time by the virtual assistant (e.g., distraction warning) 

• Be Logged for a session-level behavior monitoring 

This module can run offline, has low power consumption, supports configuration with YAML for 

class definitions and threshold levels. 

2.1.7. Event-Based Driver Distraction Detection 

In addition to RGB cameras, the Driver Distraction Detection task is addressed using event-

based sensors and Spiking Neural Networks (SNNs). Event-based cameras capture changes in 

light intensity rather than full image frames, effectively suppressing static backgrounds and 

emphasizing motion, an advantage for accurately classifying driver activities. Furthermore, 

SNNs represent a new generation of neural networks that are biologically inspired, highly 

energy-efficient, and well-suited to processing event-based data. 
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Dataset Pre-processing 

Due to the limited availability of event data, techniques that can convert RBG images to event-

based representations for SNN input are evaluated. The dataset described in 0 are converted to 

spike trains using the random coding approach, first presented in [6]. Using this method, a fixed 

value TS, referred to as the spike emission duration or number of timesteps per image, is 

defined. For each pixel in a normalized RGB image (values scaled to the [0,1] range), a spike is 

emitted at a given timestep if the pixel value exceeds a randomly sampled number from a 

uniform distribution over [0,1]. Consequently, brighter pixels (e.g., with intensity 0.9) have a 

higher probability of firing approximately 90% across the TS timesteps, while darker pixels spike  

From each video (Table 1), a total of 75 frames were sampled from the middle part. Each frame 

was then converted to grayscale and resized to a resolution of 128×128 pixels. The final 

preprocessing step involved converting the frames into spike trains using a total of TS = 110 

timesteps. Figure 17 Illustrates an RGB frame from the Driver Distraction Detection dataset 

converted into an event-based format using the described method. Moving forward, event-

based sensors will be employed to capture driver distraction datasets, enabling more efficient 

data representation and further enhancing the performance of SNN models. Figure 18 provides 

an example of distracted person using his phone, captured with the Prophesee event-based 

sensor. 

 

Figure 17: An RGB frame from the Driver Distraction Detection dataset (left) converted into an event-based representation using 
spike encoding (right) 
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Figure 18: Driver distracted by phone, captured with a Prophesee event-based sensor 

Methodology 

This section presents the architecture of the 3D Spiking Convolutional Neural Network (SCNN). 

The core building block of the model is the 3D Spiking Block, which comprises a Convolutional 

layer, a Spiking layer, and a Max Pooling layer. 

• Spiking Neuron Model 

The Leaky Integrate-and-Fire (LIF) neuron is a fundamental, biologically inspired model 

commonly used in Spiking Neural Networks (SNNs). It mimics the behaviour of real neurons by 

integrating incoming signals over time, gradually leaking some of the accumulated potential, 

and firing a spike once a predefined threshold is exceeded. The membrane potential at time 

step t, denoted as U[t], evolves according to the following dynamics: 

 𝑈[𝑡]  =  𝛽𝑈[𝑡 −  1]  +  𝑊𝑋[𝑡] 
 

       Eq. 1 

where 𝛽 = 𝑒−1/𝜏 is the membrane decay rate, W is a learnable weight and X[t] represents the 

input to the neuron. 

A spike is emitted when U[t] exceeds the threshold 𝑈𝑡ℎ𝑟. Following the spike, the membrane 

potential is reset. In our implementation, we use a subtractive reset mechanism. The spiking 

dynamics are thus defined as: 

 𝑈[𝑡] =  𝛽𝑈[𝑡 −  1] +  𝑊𝑋[𝑡] − 𝑆[𝑡 − 1]𝑈𝑡ℎ𝑟 
 

       Eq. 2 

 𝑆[𝑡]  =  𝐻(𝑈[𝑡] − 𝑈𝑡ℎ𝑟) 
 

       Eq. 3 
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where 𝑆[𝑡] ∈ {0,1} denotes the spike output at t, 𝐻(∙) denotes the Heaviside step function 

which is defined as 𝐻(𝑥) = 1 for 𝑥 ≥ 0 and 𝐻(𝑥) = 0 for 𝑥 < 1. In our experiments, we 

initialize 𝑏𝑒𝑡𝑎 to 0.9 but treat it as a learnable parameter (for all spiking layers except the final 

one), while 𝑈𝑡ℎ𝑟 is fixed to 1. 

• 3D Convolutional Spiking Block 

The proposed 3D SCNN architecture is designed to capture the spatiotemporal dynamics of 

event-based video data. In 3D convolutional layers, the kernel operates across three 

dimensions, namely height, width, and temporal depth, enabling the model to learn motion 

patterns over time alongside spatial features. Figure 19 illustrates the architecture of the 

model, which consists of 2 3D convolutional layers, followed each by a spiking neuron and a 

max pooling layer. Both 3D convolutional layers are configured with a kernel size of 3x3x3 and a 

stride of 1 in all dimensions. A fully connected layer followed by a spiking output neuron 

produces the final class prediction. 

 

Figure 19: Overview of the proposed 3D CSNN architecture 

Training 

All models were implemented on PyTorch and trained on a NVIDIA GeForce RTX 3080 Ti GPU 

with 12 GB memory. Training was carried out for a maximum of 100 epochs, with an early 

stopping mechanism applied to stop training if no improvement in validation loss was observed. 

Lastly, we utilized the Adam optimizer with a 10−3. 
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Experimental Results 

Using a held-out evaluation set, we experimented with different neural network configurations, 

focusing on optimizing both the architecture and hyperparameters. The first experiment 

concerns selecting the optimal loss function, specifically comparing three commonly used loss 

functions for spiking neural networks: Spike Count loss, Max Membrane loss, and Spike Rate 

loss.   

The architecture of Figure 19 was trained using each loss function and then tested on the 

evaluation set. Table 3 contains the accuracy, the macro and weighted average F1 scores when 

using each loss function. Among the evaluated options, Max Membrane loss consistently 

outperformed the other loss functions across all metrics, achieving the highest accuracy (0.78), 

macro-average F1 (0.77), and weighted-average F1 (0.78). In contrast, Spike Rate loss yielded 

the weakest results, indicating its limited effectiveness for this task. 

Table 3: Evaluation results for different loss functions 

Loss Function Accuracy   
Macro  

Average F1 
Weighted  

Average F1 
Spike Count loss  0.55  0.48  0.52  

Max Membrane loss  0.78  0.77  0.78  

Spike Rate  0.31  0.17  0.21  

 

Next, the impact of architectural components of the model on performance was evaluated. 

More specifically, based on the architecture of Figure 19 which contains 2 convolutional layers 

and 3 spiking layers, configurations with different number of convolutional and spiking layers 

were trained and evaluated on the testing set. All models use the Max Membrane 

loss.  contains the evaluation results for 4 different architectures.  

Table 4: Evaluation results for different number of layers 

Architecture Accuracy   
Macro  

Average F1 
Weighted  

Average F1 
3 Convolutional + 3 Spiking 0.82 0.81 0.82 

3 Convolutional + 4 Spiking 0.81 0.79 0.81 

3 Convolutional + 5 Spiking 0.61 0.56 0.59 

4 Convolutional + 5 Spiking 0.63 0.56 0.61 

 

The results indicate that architectures with 3 convolutional layers and 3 to 4 spiking layers yield 

the best performance, achieving accuracies above 0.80. Increasing the number of spiking layers 
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beyond 4 or adding an additional convolutional layer led to a notable decline in performance 

across all metrics.   

In conclusion, the best performing model utilizes the Max Membrane loss function, 3 

convolutional and 3 spiking layers, achieving an accuracy of 82%. Figure 20 shows the confusion 

matrix for the model's predictions on the test dataset. While the performance is promising, 

there is still room for improvement, particularly through further adapting of the architecture to 

better suit the dataset and task. Most importantly, since SNNs are inherently better suited for 

event-based data, developing a dedicated event-based driver distraction detection dataset is an 

important next step.  

 

Figure 20: Confusion matrix for the model's predictions on the test dataset 

2.1.8. Drowsiness Detection 

This module proposes a real-time driver drowsiness detection system that detects symptoms of 

exhaustion using basic biometric rules, the Eye Aspect Ratio (EAR) and the Mouth Aspect Ratio 

(MAR), camera input, and a combined pre-trained ONNX model for facial landmark detection. 

When drowsiness is detected, the system communicates with a virtual assistant to issue 

auditory alerts, helping drivers/users to prevent fatigue-related accidents.  
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Architecture 

Two essential components are merged in the solution's combined ONNX model. The face 

detection model used in this module is InsightFace's SCRFD_10G_KPS. For the landmark 

detection, the 2D106Det model was integrated.  

PyTorch is used to wrap these up with specific preprocessing and postprocessing processes 

before they are exported to ONNX for expedited processing. In the pre processing stage, the 

image is resized and padded to 1920x1920 pixels, converted from BGR to RGB and transposed 

from HWC to CHW format. Afterward, in the post processing phase, Non-Maximum 

Suppression is applied to face results, the detected faces are normalized and aligned via 

transformations and then cropped to 192x192 for landmark input. Finally, an inverse 

transformation recovers landmarks in the original frame. 

Drowsiness Detection Methods 

When the facial landmarks are detected, the key facial regions (eyes and mouth) are extracted 

to compute: 

• EAR: Indicates eye openness. Low EAR means eye closure and micro-sleep.  

• MAR: Measures mouth openness. Here, high MAR means yawning in combination with 

low EAR.  

The technique also employs a rolling average over the previous 30 frames for both EAR and 

MAR values to increase stability and reduce noise. These rolling averages are compared to 

predetermined thresholds. Based on this comparison, the system classifies the driver into one 

of two states: Awake or Drowsy, as it is shown in Figure 21. If the EAR falls below the threshold, 

or if both the EAR and MAR reach critical levels, the driver is flagged as Drowsy, and an alert is 

issued. 

 

Figure 21: Binary classification of driver’s drowsiness state 
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Deployment 

The drowsiness detection module operates entirely on the Jetson Orin AGX, leveraging ONNX 

Runtime with CUDA acceleration for real-time performance. Video input from a USB RGB 

camera is processed by a combined ONNX model and then as shown in Figure 22, the 

drowsiness state of the driver/user is obtained. In case there is a drowsiness event, alerts are 

published to a shared memory fusion layer and sent to an embedded large language model 

(LLM) (quantized LLaMA 3–8B). The LLM then issues voice prompts to warn the driver and 

suggest corrective actions in real time. 

 

Figure 22: The Drowsiness Detection System’s workflow diagram. 

2.1.9. Abnormal Sound Event Detection 

The abnormal sound event detection module continuously monitors the in-cabin acoustic 

environment to detect and classify auditory events that may signal distress, distraction, or 

safety-critical conditions.  

Dataset Description 

The training dataset includes eight classes of semantically relevant in-cabin acoustic events: 

Baby cry, Noise, Scream, Siren, Snoring, Speech, Traffic noise, and Vehicle Horn. These 

categories were selected to capture a range of situations that may affect driving performance 

including cognitive distractions, indicators of driver fatigue and external hazards requiring 

prompt attention as highlighted in the Driver Distraction Detection study (A safety-oriented 
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framework for sound event detection in driving scenarios). Table 5 summarises the dataset 

composition, data sources, sampling specifications and total duration of each class. Several 

indicative waveform samples of a scream and a vehicle horn recording are illustrated in Figure 

23 and Figure 24 respectively. The dataset was compiled from a diverse mix of publicly available 

sources, including environmental recordings, user-submitted content, speech corpora and 

multimedia collections. In total, the dataset comprises 3 hours and 20 minutes of labelled 

audio. This diversity in origin, format, and acoustic conditions enhances the model’s robustness 

and supports generalization to real-world in-cabin scenarios. 

Table 5: Summary of the acoustic event dataset used for training, including class names, source datasets, sampling 
characteristics and total duration per class. 

Class Dataset Description Sampling Rate Total Duration 
(min) 

Baby Cry Donate-a-Cry3 User-submitted 
infant sounds 

8 kHz 25.56 

Noise MIVIA [7]  Multi-SNR noise 
samples 

32 kHz 25.08 

Scream Deeply 
Nonverbal4 & 
Nonspeech [8] 

Expressive 
vocalizations 

16 - 32 kHz 25.22 

Siren Emergency 
Sirens 5  

YouTube/Google 
emergency 

vehicle sounds 

44.1 kHz 25.12 

Snoring Snoring Dataset 
[9] 

Compiled online 
snoring clips 

44.1 - 48 kHz 25.00 

Speech LibriSpeech [10] Audiobook 
speech from 

LibriVox 

16 kHz 25.05 

Traffic Noise Background 
Noise Dataset 6  

Environmental 
samples from 

Kaggle 

16 kHz 25.09 

Vehicle Horn UrbanSound8k 
[11] & HornBase 

[12] 

Freesound & 
controlled 
recordings 

16 - 96 kHz 26.33 

Total Duration 3 hours and 22 minutes 

 
 

3 https://github.com/gveres/donateacry-corpus    
4 https://github.com/deeplyinc/Nonverbal-Vocalization-Dataset  
5 https://www.kaggle.com/datasets/vishnu0399/emergency-vehicle-siren-sounds  
6 https://www.kaggle.com/datasets/moazabdeljalil/back-ground-noise  

https://github.com/gveres/donateacry-corpus
https://github.com/deeplyinc/Nonverbal-Vocalization-Dataset
https://www.kaggle.com/datasets/vishnu0399/emergency-vehicle-siren-sounds
https://www.kaggle.com/datasets/moazabdeljalil/back-ground-noise
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All audio clips were standardized to 16 kHz mono WAV format and normalized to ensure 

consistent amplitude scaling. Silent or low-energy segments were excluded using a threshold-

based filter. Each clip was padded or trimmed to exactly 5 seconds. 

 

Figure 23: Waveform sample of ’Scream’ class 

 

 

Figure 24: Waveform sample for ’Vehicle Horn’ class  

Methodology 

The system adopts a two-stage architecture based on transfer learning. In the first stage, 

pretrained audio embeddings are extracted using YAMNet, a convolutional neural network 

trained on the large-scale AudioSet dataset [13]. This model converts raw waveforms into 1024-

dimensional embeddings that encode high-level semantic representations of the acoustic input. 

By leveraging YAMNet as a fixed feature extractor, the system benefits from robust, general-

purpose audio understanding without the need to train from scratch. In the second stage, a 

custom multi-layer perceptron classifier (MLP) is trained on top of these frozen embeddings to 

perform task-specific classification across the eight selected sound categories. The architecture 

of the classifier, is illustrated in Figure 25. 

Training 

The dataset was split into 70% training, 20% validation, and 10% testing using stratified 

sampling to maintain class balance. Training was conducted for up to 200 epochs using the 

Adam optimizer (learning rate = 0.001) and sparse categorical cross-entropy loss. To prevent 

overfitting and ensure stable convergence, early stopping was applied with a patience of 15 

epochs, while learning rate reduction on plateau was triggered with a factor of 0.1 and patience 
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of 10 epochs. Training employed a batch size of 32 with prefetching enabled for efficient data 

loading. Training and validation accuracy and loss curves are illustrated in Figure 26 showing 

stable convergence around epoch 50 and consistently high generalization performance on the 

validation set.  

 

 

Figure 25: Architecture of the abnormal sound event detection model 

 

Figure 26: Training and validation (a) accuracy and (b) loss curves over epochs for the abnormal sound event detection model. 

Experimental Results 

The model was evaluated on a held-out test set comprising 522 audio samples evenly 

distributed across the eight target classes. It achieved a macro average accuracy of 94%, with 

strong performance across all metrics. Table 6 presents the detailed classification report, 

including precision, recall, and F1 scores per class. Most categories exhibited F1 scores above 

0.90, indicating consistent and reliable performance. 

The macro-averaged F1 score reached 0.94, confirming the model's ability to generalize well 

across diverse sound types. Minor performance drops, such as in the Scream class (F1 = 0.87), 

are attributable to higher intra-class variability and potential overlap with Speech or Noise 

samples. Figure 27 demonstrates the confusion matrix, visualising the distribution of 

predictions across all eight classes. The diagonal dominance indicates high agreement between 

predicted and true labels, while misclassifications are sparse and largely limited to acoustically 

similar classes.  
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Table 6: Classification report for the abnormal sound event detection model on the test set. 

Class Precision Recall F1-Score Support 
Baby Cry 1.00 0.86 0.93 22 

Noise 1.00 0.88 0.94 51 

Scream 0.97 0.79 0.87 48 

Siren 0.94 1.00 0.97 51 

Snoring 0.97 0.99 0.98 151 

Speech 0.94 0.98 0.96 51 

Traffic Noise 0.84 1.00 0.91 51 

Vehicle Horn 0.92 0.92 0.92 97 

Macro avg 0.95 0.93 0.94 522 

Weighted avg 0.95 0.94 0.94 522 

 

 

Figure 27: Confusion matrix for the abnormal sound event detection model. 

Deployment 

The abnormal sound event detection module runs entirely on the Jetson Orin AGX using ONNX 

Runtime with CUDA acceleration. Audio is captured via the ReSpeaker Mic Array V2.0, 

processed by the pretrained YAMNet model7 for embedding extraction, and classified by a 

lightweight MLP classifier. The model outputs the predicted class and confidence score in real 

 
7 https://github.com/tensorflow/models/tree/master/research/audioset/YAMNet  

https://github.com/tensorflow/models/tree/master/research/audioset/YAMNet
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time, publishing them to the shared memory fusion layer. These outputs are also forwarded to 

the embedded LLM (quantized LLaMA 3.1–8B), enabling context-aware reasoning and adaptive 

interaction. For instance, when such events are detected, the LLM can issue appropriate 

commands to notify the driver and assist in handling the situation. 

2.1.10. Virtual assistant for occupant interaction 

A context-aware Virtual Assistant has been developed to enable real-time, naturalistic 

interaction between occupants and the vehicle. The virtual assistant enhances driver comfort 

and safety by providing behavioural feedback related to the driver’s cues of observable 

behaviour, intuition or emotional changes, and environmental sounds or alerts (car horns etc.). 

The rapid processing of these signals allows the assistant to provide adaptable behaviour with 

responses relevant to context and superior to pre-defined responses that characterize 

traditional computer assisted driving.  

The virtual assistant relies on a LLM that conforms to the Meta architecture of LLaMA-3-8B-

Instruct [14]. The development of the virtual assistant also involved the optimization of the LLM 

to operate on edge devices (NVIDIA Jetson platform) with int4 quantization using NanoLLM8 

and compiled with TVM via MLC9 formalism. This allowed a significant reduction in operational 

memory requirements and processing while maintaining high quality processing language 

comprehension and production. The system consists of two components to support spoken 

interaction: 

• Speech-to-text (STT) is done using NVIDIA Riva 10  offering low latency and accurate 

transcription using GPU accelerated pipelines.  

• Text-to-speech (TTS) is done using Piper11, a lightweight neural TTS system suitable for 

embedded platforms, providing natural and expressive voice generation.  

The underlying services are all containerized (using Docker) to ensure modularity, scalability, 

and reproducibility across various environments. The Assistant is managed through a Python 

web UI to coordinate the audio I/O, response generation, and management of contextual 

states. 

 
8 https://dusty-nv.github.io/NanoLLM/  
9 https://llm.mlc.ai/  
10 https://developer.nvidia.com/riva  
11 https://github.com/rhasspy/piper  

https://dusty-nv.github.io/NanoLLM/
https://llm.mlc.ai/
https://developer.nvidia.com/riva
https://github.com/rhasspy/piper
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Multimodal Input & Context-Aware Behaviour 

The Virtual Assistant currently receives input exclusively from three key perception modules: 

Facial Emotion Recognition (Section 2.1.4), Driver Distraction Detection (Section 2.1.5), and 

Abnormal Sound Event Detection (Section 2.1.6). These modules operate independently, 

providing high-level semantic insights regarding the driver’s emotional state, cognitive load, 

and relevant auditory events within the cabin. In addition, the assistant uses a dedicated 

microphone solely for speech-based user interaction and does not directly process other 

continuous sensor inputs. 

Each contributing module performs its own noise-robust analysis and forwards pre-processed 

output to the assistant. To improve reliability, decisions are smoothed using majority voting 

across a temporal window, minimizing false positives or overreaction to brief, transient signals. 

Once a significant event or change is detected, such as a shift in emotional state, distraction 

behaviour, or alarming sound, a concise contextual summary is generated and provided as a 

prompt to the embedded language model. 

The assistant’s responses are formulated to be brief, context-aware, and minimally disruptive, 

aimed at enhancing driver situational awareness without introducing distraction. Additional 

modules described in Section 2.1 (e.g., drowsiness detection, passenger identification, object 

detection) are planned for integration in future development stages to further enhance the 

assistant's situational understanding and interaction capabilities. 

Model Optimization with NanoLLM and TVM 

Deploying large models on edge devices is extremely challenging because the devices have very 

limited computational and memory resources. To overcome these limitations, NanoLLM8 was 

adopted, a framework for efficiently running transformer models on a diverse range of 

hardware. Using MLC9 and TVM, LLaMA3 [14] model was converted into an optimized runtime 

format with int4 quantization resulting in substantial decreases resource utilization while 

maintaining response quality. With these resources optimizations, the assistant can run fully 

offline, there-by enabling low-latency inference and improved reliability in embedded spaces 

such as automotive platforms. The modularity of the NanoLLM framework also allows support 

to quickly transition to other hard-ware platforms as needed. 

Real-Time Speech Recognition with NVIDIA Riva 

The system's ASR (Automatic speech recognition) engine is NVIDIA Riva10, which operates in a 

hosted service environment. Riva has the advantage of providing fast, GPU-accelerated 

transcription with very high accuracy under noisy in-car conditions. Riva has the ability to 

operate via gRPC-based streaming which supports continuous speech capture and 
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transcription. The entire process executes locally in a Dockerized container on Jetson, and with 

this architecture, it required no remote background processing. It also melded seamlessly with 

the requirements of DGI and edge deployment for rapid response with no internet access in a 

vehicle. 

Natural Text-to-Speech using Piper 

With Piper11 incorporating natural text to speech functionality for responding audibly became 

feasible. Modern neural TTS engines designed for edge performance, like Piper, fully phoneme 

text-to-speech systems utilizing compact and optimized voice models to synthesize speech. The 

selected voice had been precompiled which reduces the need to dynamically compile voices 

during playback resulting in fast synthesis.  

The TTS pipeline is tightly integrated with the assistant's main logic, so that responses are 

vocalized instantly, preserving the sense of real-time conversation. Importantly, Piper is 

designed to run fully offline, avoiding cloud dependency and making it well-suited for the 

automotive domain, where latency and reliability are critical. 

2.2. Cooperative saliency-based pothole detection and AR rendering 

solutions 

This task focuses on enhancing road safety, driver awareness, and overall in-cabin experience 

by integrating cooperative perception and intuitive visualization mechanisms. The system under 

development leverages a saliency-based approach for detecting negative road anomalies (e.g., 

potholes) and employs Augmented Reality (AR) to render these hazards directly in the driver’s 

field of view. Emphasis is placed on real-time responsiveness, resource efficiency, human 

interpretability, and cooperative communication within connected vehicle networks. 

Application Context and Benefits 

The solution contributes in two key directions: 

• Enhanced Safety and User Experience: By delivering timely and intuitive AR cues about 

hazardous road conditions, the system improves situational awareness and supports 

proactive driving behavior. It facilitates safer human-vehicle interaction within XR-

enabled automotive ecosystems and is further reinforced through immersive training 

simulations. 

• Human-Centered Automotive Innovation: The system integrates structured user 

feedback to refine the Human-Machine Interfaces (HMIs), ensuring that AR-based 

Advanced Driver Assistance Systems (ADAS) align with real-world expectations and 
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ergonomic needs. This inclusive design approach targets improved trust, comfort, and 

adoption across diverse user groups. 

2.2.1. Saliency-based potentially hazardous obstacle detection 

At the core of the system lies a saliency-aware detection framework that processes 3D LiDAR 

point clouds to identify road surface anomalies. Each point is assigned a saliency score derived 

from its local geometric and spectral properties, highlighting deviations from typical road 

topology. High-saliency regions often correspond to sharp geometric discontinuities—indicative 

of potholes or bumps. 

Detected potholes are classified into “Far,” “Close,” and “Detected” states based on spatial 

thresholds relative to the ego vehicle. A rule-based filtering mechanism considers vehicle 

speed, obstacle severity (e.g., estimated volume), and proximity to prioritize information. This 

ensures that only the most critical cues are surfaced to the driver—minimizing distraction and 

preserving cognitive load. A colour-coded system indicates the severity of the detected 

potholes.  

Visualization Enhancements Include: 

• A color-coded severity scale (e.g., Green = minor, Orange = moderate, Red = severe) (Figure 

28). 

• Dynamic size and elevation adjustments of rendered pothole markers based on proximity 

and depth. 

• Selective rendering logic to omit minor imperfections at high speeds or when not relevant 

to trajectory. 

• This adaptive interface is critical to preventing tunnel vision or visual overload—recognized 

risks in AR-HUD designs. 
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Figure 28: Overlay visualization of the pothole with different colours based on their severity. Different severity prioritization of 
potholes based on their size and volume. 

2.2.2. Augmented Reality rendering & early hazard awareness 

Upon detection, the AR module activates to project the pothole's location and severity directly 

onto the windshield interface. When the vehicle is within a 40-meter radius, a semi-transparent 

overlay appears above the pothole along with a floating warning icon. The rendering system is: 

• Non-intrusive: Graphics are conformal and preserve scene continuity. 

• Scalable: Supports visualization of multiple hazards in real-time. 

• Context-sensitive: Tailored to driver behavior, road topology, and vehicle trajectory. 

This approach enhances early awareness and affords drivers sufficient time to adapt speed or 

path, without diverting attention from the road. 
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2.2.3. Cooperative information sharing 

To further support situational awareness beyond a single vehicle's perception capabilities, a 

cooperative communication layer has been integrated into the system. Detected pothole data 

is shared with other connected vehicles and roadside infrastructure, enabling a shared 

understanding of the driving environment across a network of vehicles. This cooperative 

approach enhances system redundancy and robustness and is crucial for forming a collective 

environmental model that can support more informed autonomous decision-making. 

2.2.4. Technical Advancements and Implementation 

The visualization of the potholes in the application is completed in two main phases: the 

creation phase and the visualization phase. 

In the creation phase, a 3D mesh of the road with the pothole is constructed using Blender, an 

open-source 3D modelling application. After creating the pothole mesh, the road is imported in 

the Unreal Engine 5, where the application is developed. 

Once the mesh is imported, we move into the visualization phase. It is assumed that the 

scanning and detection process have already been completed by another car with the needed 

sensors. Knowing the location and the shape of the hole have been recorded, this information 

is used to display a transparent marker in the position of the hole along with a warning sign 

above it, both of which are only visible in the windscreen display and are not rendered on the 

rest of the scene. 

When the driver's car enters the detection range (default value is 40m), both the sign and the 

transparent marker become visible in the windscreen display of the car to alert the driver. 

Additional important detail is that the transform (location specifically on the z axis, rotation and 

scale) of the warning sign changes dynamically depending on the distance from the obstacle to 

ensure that it remains clearly visible to the driver. 

2.2.5. Visual Material 

The presentation includes visual demonstrations of: 

• Pothole visualization from ego-vehicle perspective (Ego 1). 

• Early warning scenario (Ego 2), where AR-enhanced overlays guide the driver with clear, 

in-situ road hazard cues (Figure 29). 

• Recognition phase showing dynamic detection states (Detected, Turn, Close, Far) 

(Figure 30). 
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Figure 29: Pothole recognition and visualization for early awareness. 

 

Figure 30: Visualization of pothole recognition in different distances. 

2.2.6. Next Steps 

Ongoing efforts are focused on further optimizing the detection latency, enriching the 

visualization interface with additional cues (e.g., bump severity levels), and integrating the 

system into full-stack CAV simulators. Future iterations will also incorporate feedback from 

human-centered evaluations to ensure ergonomic compliance and maximize driver acceptance. 
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2.3. In-vehicle air quality and thermal comfort analysis  

Ensuring a comfortable, healthy, and safe in-vehicle environment for passengers relies heavily 

on the real-time monitoring, reporting, and analysis of air quality and thermal comfort 

conditions. The analysis of this data provides valuable insights into the in-cabin environment, 

facilitates the detection of abnormal conditions, and supports the initiation of corrective 

actions. These actions can be carried out by the driver or passengers, such as adjusting the 

operational settings of the air conditioning system to improve temperature conditions or 

opening windows to enhance ventilation. Furthermore, the development of spatiotemporal in-

vehicle models enables detailed analysis of environmental conditions under various testing 

scenarios, contributing to the advancement of predictive and diagnostic capabilities aimed at 

preventing uncomfortable or unhealthy situations. 

2.3.1. Smart Sensors Deployment 

Sensors Properties 

Two different types of sensors will be used for analyzing in-vehicle environmental conditions; a) 

advanced stationary smart sensors fixed in designated cabin locations and b) sensors integrated 

into mobile devices such as smartphones.  Both sensor types are capable of measuring a variety 

of environmental parameters, including temperature, relative humidity, volatile organic 

compounds (VOCs), and particulate matter (PM), such as PM2.5 and PM10. Furthermore, the 

data collection frequency can be manually adjusted based on the conditions and the passenger 

on boarding rate, ranging from 2 to 5 mins—allows for continuous and dynamic monitoring, 

which is essential for promptly identifying abrupt environmental changes or discomforting 

conditions. 

Sensors Placement 

The strategic placement of advanced stationary sensors within the vehicle cabin is essential for 

ensuring accurate, reliable, and representative environmental measurements. These sensors 

must be installed in areas that are not directly influenced by dynamic and continuous airflow 

changes—such as those near air conditioning inlets or vents—as such locations may distort 

readings. Instead, the sensors should be positioned in zones that reflect the actual exposure of 

passengers, particularly near seating areas, where individuals spend most of their travel time. 

To capture spatial variability effectively, stationary sensors will be installed at occupant head 

height and distributed across different sections of the bus—specifically at the front, middle, and 

rear of the cabin. This approach ensures a comprehensive spatial profile of air quality and 

thermal comfort conditions throughout interior space. In contrast, mobile sensors will not be 

fixed in place but rather carried by selected passengers. This allows for dynamic spatial 
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mapping of environmental conditions as the sensors move through the cabin. When combined 

with data on passenger movement, these mobile measurements can offer deeper insights into 

personal exposure levels and localized environmental variations that fixed sensors may not fully 

capture.  

It is also important to note that, for stationary sensors, a smart hub will be deployed to manage 

wireless connectivity and data transmission. This hub will be connected to a power source and 

strategically positioned near the driver’s area, ensuring stable communication with all sensors 

and reliable data flow to the central platform at all times during bus operation. 

Integration and Results Visualization 

Both types of sensors—stationary and mobile—are seamlessly integrated with an IoT platform, 

which serves as the central system for data aggregation, processing, and management. Through 

the smart hub and standardized wireless communication protocols, real-time sensor data is 

transmitted to the platform, where it is securely stored, analyzed, and processed using 

advanced algorithms. 

Following processing, the data is transmitted to an external visualization interface usable by 

relevant stakeholders, including drivers, passengers, and system operators. This interface 

allows for real-time monitoring of in-vehicle environmental conditions, as well as retrospective 

analysis through the exploration of historical trends. In addition to visualization, the platform 

supports anomaly detection, automatic alert generation, and control action suggestions—such 

as adjustments to the air conditioning system to restore or improve thermal comfort and air 

quality. An example of the visualization platform, along with the installed sensors, is presented 

in Figure 31. 

 

Figure 31: Example of the in-vehicle environment stationary sensor and visualization interface. 
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2.3.2. Spatiotemporal of in-vehicle environment using 3D Computational Fluid 
Dynamics 

Even though real-time sensor data provides valuable point-based measurements, it cannot fully 

capture the complex behavior of airflows, the distribution of temperature or pollutant 

dispersion across the entire cabin space. Therefore, a high-fidelity three-dimensional 

Computational Fluid Dynamics (3D CFD) model is developed as a complementary tool to 

simulate and analyze the spatiotemporal behavior of the in-vehicle environmental parameters 

under various operating conditions. 

This numerical virtual model provides a full-field view of the interior conditions, helping identify 

critical areas such as stagnation zones, thermal discomfort regions, or areas prone to pollutant 

accumulation. These insights are critical for diagnosing environmental inefficiencies and guiding 

improvements or operational adjustments to mechanical systems such as the AC units. 

For numerical simulations, Reynolds-Averaged Navier–Stokes (RANS) equations are used for 

solving and modelling steady–state airflow and heat transfer within the vehicle cabin. 

Moreover, the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm was 

implemented for analyzing the pressure velocity coupling, while the standard k–ε turbulence 

model was considered for the turbulence effects [15], [16], [17], [18]. Furthermore, the 

geometry of the bus cabin was accurately reconstructed, and appropriate boundary 

conditions—such as inlet velocities, temperature profiles, and surface properties—were applied 

based on realistic operational data. 

An example of the CFD simulation results is presented in Figure 32, showcasing the 

temperature distribution and airflow patterns throughout the bus interior. These results 

highlight the capability of CFD to analyze in detail environmental behaviors that cannot be 

detected by sensors alone—for example, the formation of hot or cold zones, inadequate 

ventilation regions, or recirculation areas.  

Additionally, to the detail analysis of different in-vehicle environmental parameters, the CFD 

model can also be employed in various theoretical testing scenarios, including investigations of 

contamination events or evaluations of alternative mechanical system designs, such as various 

air conditioning (AC) unit configurations. This is because the model allows the simulation of 

different operating conditions, including variations in HVAC settings, window openings, 

passenger occupancy levels, and even localized pollutant sources—such as coughing or 

sneezing—relevant to airborne disease transmission. These scenarios provide valuable support 

for predictive diagnostics, allowing for the proactive identification of potentially uncomfortable 

or unhealthy cabin conditions.  
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Figure 32: Example of In-vehicle CFD simulation for a) temperature distribution and b) air flow patterns 

2.3.3. In-cabin air quality forecasting 

This module provides real-time forecasting of in-cabin air quality by leveraging sensor data on 

CO₂, PM2.5, TVOCs, humidity, and temperature. Using a LightGBM-based predictive model 

trained on the GAMS Indoor Dataset, it continuously adapts to the latest environmental 

conditions to deliver short-term, minute-level forecasts. These predictions are integrated into a 

dashboard and connected with an onboard LLM to enable context-aware reasoning, early 

warnings, and personalized recommendations for healthier cabin environments. 

Dataset  

The GAMS Indoor Dataset 12 is used for model training. It contains high-frequency (1-minute) 

indoor air quality (IAQ) measurements from real environments, including CO₂, humidity, PM2.5, 

temperature, and TVOCs (Table 7). The dataset spans Nov 21, 2016 – Mar 28, 2017 (~135,099 

data points). 

Table 7: Format of the GAMS Indoor Dataset 

Factor Description Units Sample Value 
CO₂ Carbon Dioxide concentration ppm 708.0 

Humidity Relative Humidity % 72.09 

PM2.5 Particulate Matter ≤2.5 µm µg/m³ 9.0 

Temperature Air temperature °C 20.83 
 

TVOCs Total Volatile Organic 
Compounds 

ppm 0.062 

 
12 Twairball. (2017). GAMS indoor air quality dataset. GitHub. https://github.com/twairball/gams-dataset  

https://github.com/twairball/gams-dataset
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Methodology  

To forecast IAQ, environmental factors (CO₂, PM2.5, TVOCs, temperature, humidity) and time 

features (hour, day, month) were used. Short-term trends were captured by including pollutant 

measurements from the previous five minutes. 

The LightGBM regressor [19] was selected due to its efficiency and accuracy, trained for 100 

boosting rounds using mean squared error (MSE) as the loss function. 

The forecasting task was set to a 1-minute prediction horizon, where the last five 

measurements are used as inputs. This setup is directly connected to real-time data from the 

sensor, ensuring that the model continuously adapts to the most recent environmental 

conditions. 

Training and Results 

Data was split chronologically to prevent leakage: 

• Training: Before March 3, 2017 (~80%) 

• Testing: From March 3, 2017 (~20%) 

This ensures evaluation on future, unseen data to emulate real-world forecasting. The results of 

the training are shown in the Table 8. 

Table 8: Evaluation Metrics for IAQ Parameters 

Variable RMSE MAE R² 
CO₂ 6.62 3.59 0.9997 

VOC 0.009 0.003 0.9921 

PM2.5 0.64 0.44 0.9946 

 

Deployment 

Models are deployed on the Jetson Orin AGX using Python with CUDA for real-time inference. 

Sensor data is streamed to generate short-term air quality forecasts, which are integrated into 

a dashboard, as one can see in Figure 33, that visualizes both real-time and predicted values. 

The dashboard provides interactive charts, dynamic alarms, and session summary reports 

highlighting pollutant trends, threshold exceedances, and improvement tips. Forecast outputs 

are also processed in parallel with a quantized LLaMA 3–8B model to enable context-aware 

reasoning and personalized feedback, supporting preventive actions and healthier indoor 

conditions. 
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Figure 33: Real-Time IAQ Forecasting Dashboard 

 

2.4. Visual analysis with object detection and vision-language models in 
public transport vehicles 

An in-cabin monitoring system integrates multiple computer vision and machine learning 

components to assess passenger behavior, occupancy, and safety. The proposed system that is 

under development can potentially combine object detection, activity recognition, and vision-

language models to interpret dynamic, multi-modal visual environments such as those inside 

public transport vehicles. Object detection modules, such as those based on the YOLO family of 

models, are employed to localize and classify individuals or objects within the scene, offering 

foundational spatial awareness. For more complex tasks such as identifying aggressive 

behavior, temporal video classification models are used to differentiate between violent and 

non-violent interactions using datasets tailored to transportation contexts. However, object 

detection and action classification alone cannot capture nuanced contextual information. 

Hence, Vision-Language Models (VLMs) are introduced to bridge this gap. VLMs generate 

descriptive narratives and answer questions about visual content, enabling high-level scene 

understanding and safety assessments. This multi-layered architecture creates a robust 

analytical pipeline capable of transforming raw video data into interpretable insights, making it 

suitable for scalable deployment in intelligent public transportation systems. Herein we 



                                                                                   D3.2 Advanced internal and external sensing system.v1 
 

Page 62 of 133 

describe the proposed components. However, further optimizations and refinements still need 

to be investigated to make sure that these components can be feasibly integrated into the pilot 

scenarios. 

2.4.1. Object Detection in buses 

In this case, we leveraged YOLO object detection models to monitor the inside environment of 

a bus. See Section 2.1.3 for the details about YOLO architecture and functionality. Such models 

can be initially applied to a video, capturing the interior of a bus, to detect passengers that are 

standing or seated.  YOLOv11 which is pretrained on the COCO dataset was used for this case 

with Figure 34 showing its results. The model was able to detect passengers in the bus to 

monitor occupancy.  With bounding boxes around each person, the model provides a detailed 

visual representation of the spatial arrangement of passengers inside the bus. 

 

 

Figure 34: YOLOv11 detections of people. 

Experiments were also carried out using the YOLO World model (Figure 35) which works by 

conditioning the detection output to a given text, representing the classes to be detected. In 

effect, this allows recognizing different objects that the model has not been explicitly trained 

on. Object classes could include "person," "seated person," "standing person," and 

"empty/vacant seat". However, the model was not that reliable in detecting these classes, 

therefore the approach was simplified to focus only on the "person" class. This first attempt 

provided a basic structure for object detection and classification within the bus environment. 
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Figure 35: Example of detections using the YOLO World model. 

2.4.2. Violence/Non-Violence Video Classification 

As mentioned in D3.1, the Bus Violence dataset based on can be used in a bus monitoring 

system to train and evaluate models for automated violence detection in real-time onboard 

video feeds. By providing short, annotated video clips of both violent and non-violent 

interactions recorded from multiple camera angles inside a moving bus, the dataset enables the 

development of supervised learning models (e.g., CNN-RNN hybrids, 3D CNNs, transformers) 

that can learn temporal and spatial patterns associated with aggressive behaviours. Its balanced 

class distribution (700 videos classified as violent and 700 videos classified as non-violent) make 

it suitable for both training and benchmarking violence detection algorithms under realistic 

conditions, such as crowded scenes, occlusions, and camera motion.  

Figure 36 below shows a snapshot of the video classification output during inference.  In the 

top-left corner, the model's prediction, either violent or non-violent, is clearly displayed. The 

video classification model was trained for 100 epochs using the Bus Violence dataset, with 

ResNet18. serving as the backbone architecture reaching at the end an 0.95 accuracy rate. 

 

 
Figure 36: Model prediction output during inference on the Bus Violence dataset. 
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2.4.3. Vision Language Models for bus passengers identification 

While object detection provides information, such as the types of objects and localization 

within an image, it does not provide information regarding higher level activities within a scene. 

For this reason, in this task, we exploit the combined usage of object detection with a VLM to 

describe the activities captured in each video frame. The VLM in this case, processed the visual 

data (namely each frame of the video) and generated textual descriptions of what is happening 

in the bus. These descriptions provided contextual insights, complementing the visual 

detections and offering a narrative of the scene. Figure 37 gives an example of the output of 

the processed video. 

The final output is a combined video designed to present both visual detections and textual 

descriptions. The right side of the video displays the YOLOv11-generated bounding boxes 

overlaid on the frames of the video, highlighting detected objects such as the passengers of the 

bus. On the left side, the VLM-generated descriptions were displayed, providing a detailed 

account of the activities in each frame. A text prompt was further provided to the VLM as it 

processed the video to generate an appropriate response. For example, when given the 

prompt: "What is happening on the bus, and is there any danger in it?", the model analysed 

each frame and responded: "The bus is filled with passengers, and no visible danger is present." 

 

Figure 37: YOLOv11 detections of people in the bus with the descriptions of the VLM model. 

Investigation of Prompting Techniques 

Various VLMs models were tested with different prompts to analyse activities inside the bus 

and assess the level of safety and comfort based on the provided images or video footage. The 

following text prompts were used to extract insights from scenes depicting passengers inside 

the bus:  
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• “Explain this image in detail.”/ “Describe this image.” 

• “What can you see on this image?” / “What can you say about this image?” 

• “Can you describe thoroughly frame by frame what is going on in this video?” / “Can 

you explain thoroughly the activity of this video?” 

• “Describe this image and state whether the passengers feel safe.” 

• “Is there is any danger in the image?” 

• “What is going on in this image?” 

• “Make a summary of what is happening in the bus.” 

 
The VLM models effectively described the images and video frames in detail, generating 

responses of two to three paragraphs while accurately identifying most objects in the scene. 

When prompted to assess passenger safety in a bus video, the model responded: "The video 

does not show any danger in the bus." 

Exploration of Different VLM Models Optimized for Edge Deployment 

VLM models require significant memory resources due to their ability to process both visual 

and textual data using large-scale transformer architectures. Running inference on multiple 

images and text sequences simultaneously further increases memory demands, making these 

models unsuitable for edge deployment. 

Most VLM models contain over a billion parameters, contributing to their high memory 

consumption. However, advancements in computer vision have led to the development of 

more lightweight open-source alternatives. One such example is SmolVLM 13, which offers two 

compact models: SmolVLM-256 14 and SmolVLM-500 15, with 250M and 500M parameters, 

respectively. These are currently the smallest VLM models available showing competitive 

results when evaluated on different benchmarks.  

In addition to testing the models on real images, as previously described, artificially generated 

images (shown in Figure 38) were also evaluated to assess their performance. 

Both models successfully provided detailed descriptions of the images. However, some of the 

generated information was inaccurate, highlighting the limitations of smaller models in 

capturing the full contextual details of an image. Larger models, particularly those with around 

7 billion parameters, demonstrated greater accuracy in this task, suggesting that a higher 

 
13 https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct  
14 https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Instruct  
15 https://huggingface.co/HuggingFaceTB/SmolVLM-500M-Instruct  

https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-500M-Instruct
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number of parameters enhances the model's ability to interpret complex visual scenes more 

reliably. 

 

Figure 38: AI generated images of people in a public bus. 

Further Experimentation 

Further experimentation involved fine-tuning VLMs using a dataset from Roboflow16. The figure 

below illustrates a prediction from Florence217, a 0.23B parameter model capable of caption 

generation, optical character recognition (OCR), segmentation, and object detection (shown in 

Figure 39). In this instance, it successfully detected the faces of bus passengers. Beyond these 

tasks, the model was also fine-tuned for Visual Question Answering (VQA). For example, when 

asked, “How many people are sitting in the bus?”, it responded, “The number of people sitting 

in the bus is 21.” After fine-tuning, the model was evaluated on a test set and demonstrated 

strong precision, with predictions closely aligning with the ground truth. In one case, when 

asked the same question, it predicted “The number of people sitting in the bus is 22,” while the 

ground truth was 23. 

 
16 https://universe.roboflow.com/cuenta-6ibit/cuenta-fujbt  
17 https://huggingface.co/microsoft/Florence-2-base  

https://universe.roboflow.com/cuenta-6ibit/cuenta-fujbt
https://huggingface.co/microsoft/Florence-2-base
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Figure 39: Florence2 detections on image. 

The SmolVLM-Base18 model (2.2B parameters) was further fine-tuned for visual question 

answering (VQA) using synthetic image data.  Synthetic generated images paired with 

corresponding questions and answers, exemplifies the type of data employed during the fine-

tuning process. Following fine-tuning, the model was evaluated on a test set and showed 

accurate performance. For instance, in response to the question, “How many people are 

sitting?”, the model correctly predicted, “There are 5 people sitting in the bus,” matching the 

ground truth. Alongside fine-tuning efforts, extensive experimentation with prompt 

engineering was conducted to determine which models best describe visual scenes or answer 

image-based questions. Platforms such as the Roboflow Playground19 have proven useful in this 

regard, enabling users to test some of the most prominent models for these tasks. 

Future Steps 

The next steps involve gathering comprehensive visual data from buses operating in Cyprus to 

support the development of an intelligent monitoring system. This will be followed by 

integrating YOLO-based object detection models with VLM to enable accurate object 

recognition and generate contextual visual descriptions of bus environments. The aim is to 

develop a bus monitoring pipeline capable of real-time detection and scene understanding. In 

parallel, methodologies for deploying this system efficiently at the edge will be explored, 

ensuring low-latency performance and scalability for real-world applications. 

 
18 https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct  
19 https://playground.roboflow.com/open-prompt?utm_campaign=Newsletter+-+4%2F10%2F2025+-
+%5Bplayground%5D&utm_content=Newsletter+-+4%2F10%2F2025+-
+%5Bplayground%5D&utm_medium=email_action&utm_source=email  

https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct
https://playground.roboflow.com/open-prompt?utm_campaign=Newsletter+-+4%2F10%2F2025+-+%5Bplayground%5D&utm_content=Newsletter+-+4%2F10%2F2025+-+%5Bplayground%5D&utm_medium=email_action&utm_source=email
https://playground.roboflow.com/open-prompt?utm_campaign=Newsletter+-+4%2F10%2F2025+-+%5Bplayground%5D&utm_content=Newsletter+-+4%2F10%2F2025+-+%5Bplayground%5D&utm_medium=email_action&utm_source=email
https://playground.roboflow.com/open-prompt?utm_campaign=Newsletter+-+4%2F10%2F2025+-+%5Bplayground%5D&utm_content=Newsletter+-+4%2F10%2F2025+-+%5Bplayground%5D&utm_medium=email_action&utm_source=email
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2.5. Concluding remarks 
This section has presented the AutoTRUST comprehensive and integrated approach to in-cabin 

monitoring and occupant interaction system, emphasizing the role of multimodal sensing, edge 

computing, and real-time analytics in enhancing vehicle safety, personalization, and user well-

being. Through detailed descriptions of camera and microphone placements, sensor modalities, 

and deep learning-based inference pipelines, the section has demonstrated the feasibility and 

effectiveness of deploying complex AI models on embedded platforms under constrained 

conditions. From driver behavior and drowsiness detection to facial recognition, emotion 

understanding, and abnormal sound event classification, each module contributes to a layered 

perception framework that enables context-aware responses and autonomous support 

mechanisms. The integration of a virtual assistant powered by a quantized LLM further 

exemplifies how semantic-level understanding and human-like interaction can be embedded 

directly into the vehicle environment, minimizing reliance on cloud connectivity and improving 

responsiveness. In conclusion, the work outlined in this section lays the technical and 

conceptual foundation for a new generation of intelligent, human-centered vehicle cabins—

capable of interpreting, adapting to, and actively supporting the occupants in a safe, private, 

and contextually rich manner. In the following section, we move from the interior of the vehicle 

to its exterior and present AutoTRUST innovative approach.  
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3. External sensing system of 4D cooperative situational 

awareness for scene analysis, safe and inclusive 

mobility 
The evolution of cooperative perception and decision-making systems has become a 

cornerstone in enabling safe, context-aware, and intelligent mobility solutions for connected 

and automated vehicles (CAVs). This chapter outlines the development and integration of 

AutoTRUST’s advanced external sensing system designed to deliver 4D cooperative situational 

awareness, enhancing both safety and inclusivity in modern mobility ecosystems. To this end, a 

layered approach was followed, beginning with single-agent scene analysis modules (such as 

road condition assessment and traffic sign detection) that operate at the edge, using real-time 

vision-based perception models deployed on embedded platforms like the NVIDIA Jetson Orin 

AGX. The focus then expands toward multi-agent systems that enable collaborative awareness 

and localization through standardized V2X messaging, distributed learning, and cooperative 

tracking strategies, incorporating techniques such as federated learning, Kalman filtering, and 

graph signal processing, laying out a comprehensive framework for situational awareness that 

is scalable, robust, and communication-efficient. The chapter is structured as follows. Section 

3.1 covers single-agent scene analysis, emphasizing contextual perception through road 

condition assessment and traffic sign detection. Section 3.2 expands the scope to multi-agent 

cooperation, showcasing the use of standardized V2X messaging, cooperative localization, and 

distributed optimization techniques for multi-object detection and tracking. Finally, our 

concluding remarks are provided in Section 3.3. 

3.1. Single-agent scene analysis for contextual understanding 

3.1.1. Road condition assessment 

The road-condition assessment module continuously monitors the external environment, by 

using an internal outward camera in front of the driver to detect potholes on the road. 

Dataset Description 

The Road Pothole Images dataset20 comprises real-world roadway photographs annotated with 

surface‐defect bounding boxes to facilitate pothole detection. The original release contains two 

subsets—a “Simplex” set with 3 403 images and a “Complex” set with 8094 images—capturing 

 
20 https://www.kaggle.com/datasets/sovitrath/road-pothole-images-for-pothole-detection  

https://www.kaggle.com/datasets/sovitrath/road-pothole-images-for-pothole-detection
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diverse lighting, pavement textures, and pothole shapes. In this work, we leverage the Simplex 

subset, which includes 3 126 training images and 277 test images. Each image is annotated via 

plain‐text files (simpleTrainFullPhotosSortedFullAnnotations.txt and 

simpleTestFullSizeAllPotholesSortedFullAnnotation.txt), where each line specifies an image 

filename, the number of potholes it contains, and the pixel‐coordinates (x_min, y_min, width, 

height) of each pothole instance. 

The Table 9 summarizes the composition and organization of our processed dataset. All 

annotations were parsed and converted into YOLO‐compatible label files (one class: “pothole”), 

and the images were reorganized into three splits—3 126 for training, 277 for validation, and 

277 for testing—via the custom preparation script. 

Table 9: Composition and YOLO-compatible organization of the processed pothole dataset. 

Subset Source Folder Images Annotation Files 
Train Dataset 1 (Simplex)/Train 

data/Positive data 
3126 simpleTrainFullPhotosSortedFull

Annotations.txt 

Validation Dataset 1 (Simplex)/Test data 277 simpleTestFullSizeAllPotholesSo
rtedFullAnnotation.txt 

Test Dataset 1 (Simplex)/Test data 277 simpleTestFullSizeAllPotholesSo
rtedFullAnnotation.txt 

• Image format: JPEG, varying resolutions 

• Classes: 1 (“pothole”) 

• Annotation format: text file with image_id, num_potholes, and repeated (x_min, y_min, 

width, height) entries per pothole 

• Splits: reorganized into train/, valid/, and test/ directories with separate images/ and 

labels/ subfolders 

• Label conversion: coordinates normalized and formatted as class x_center y_center 

width height in YOLO style by custom script. 

Model Architecture 

The detector core is Ultralytics YOLOv8-s21, an 11 M-parameter network that fits entirely in the 

on-chip SRAM of modern embedded GPUs. We export the model from PyTorch to ONNX (FP32). 

At inference, the network produces bounding-box coordinates, objectness scores and class 

logits for the five target object categories. 

 

 
21 https://docs.ultralytics.com/models/yolov8/  

https://docs.ultralytics.com/models/yolov8/
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Figure 40 YOLOv8 Architecture22 

Training 

The dataset was pre-partitioned into 3 126 for training, 277 for validation, and 277 for test 

images. Training proceeded for 20 epochs using stochastic gradient descent (initial learning rate 

= 0.01; momentum = 0.937; weight decay = 0.0005) with a binary cross-entropy focal loss, and a 

confidence threshold of 0.2. Automatic mixed precision (AMP) was enabled to accelerate 

 
22 https://blog.roboflow.com/what-is-yolov8/ 

https://blog.roboflow.com/what-is-yolov8/
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convergence and reduce memory footprint. To guard against overfitting and improve 

generalization to varied pavement textures and lighting, the standard YOLOv8 augmentation 

pipeline (mosaic, mix-up, random affine, HSV jitter) was applied on-the-fly. A batch size of 8 

was used at 640 × 640 resolution, with data prefetching to maximize GPU utilization on Jetson 

hardware. Training and validation box/cls/DFL losses along with precision, recall, and mAP@0.5 

metrics are plotted in Figure 41, showing stable convergence by epoch 15 and minimal 

overfitting through epoch 20. 

Testing 

The pothole detector was evaluated on the held-out test split of 277 images. At the conclusion 

of training (epoch 20), the model achieved a precision of 0.63, recall of 0.50, mAP@0.5 of 0.53, 

and mAP@0.5–0.95 of 0.23. 

In the Figure 42 is illustrated a selection of validation images with predicted bounding boxes 

and confidence scores overlaid, demonstrating robust localization of larger pothole instances 

under varied lighting and pavement textures. 

 

Figure 41: Training and validation performance metrics demonstrating stable convergence and minimal overfitting of the 
YOLOv8 pothole detection model. 
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Figure 42: Sample validation images with predicted bounding boxes and confidence scores. 

The confusion matrix in Figure 43 summarizes true/false positives and negatives across the 

“pothole” vs. “background” classes. Of 1 306 ground-truth pothole annotations, the model 

correctly detected 562 (true positives) but missed 744 (false negatives), yielding the moderate 

recall observed. It also generated 177 false positives on background regions, contributing to the 

measured precision. 

Overall, the detector reliably identifies prominent potholes but struggles with smaller or low-

contrast defects. Future work will explore targeted augmentation (e.g., scale jittering, contrast 

variations) and additional hard-negative mining to boost recall while maintaining precision. 
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Figure 43: Confusion matrix for “pothole” vs. “background” classes. 

Deployment 

The road-condition assessment pipeline executes on the Jetson Orin AGX via ONNX Runtime 

with CUDA support. Each frame from the forward-facing camera is sent through the ONNX-

format classifier, which produces a class prediction and confidence score in real time. These 

results are written to the shared‐memory fusion layer and simultaneously passed to the 

onboard LLM (quantized LLaMA 3–8B). This enables the system to reason for detected road 

conditions in context for example, triggering driver alerts or issuing corrective guidance 

whenever a hazard is recognized. 

3.1.2. Traffic Sign Detection 

The traffic sign detection module continuously monitors the external environment, by using an 

internal outward camera in front of the driver to detect traffic signs on the road. 

Dataset Description 

The Traffic Signs Detection dataset contains real-world road scenes annotated with bounding 

boxes for 15 sign classes (Green Light, Red Light, Stop, and Speed-Limit signs from 10 km h⁻¹ to 

120 km h⁻¹). The public release already follows a three-way split, totaling 4969 JPEG images 

(Table 10): 
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Table 10: Traffic Signs Detection dataset 

Subset Source folder Images Annotation files 
Train train/images 3471 train/labels/*.txt 

Valid valid/images 998 valid/labels/*.txt 

Test test/images 500 test/labels/*.txt 

• Image format: JPEG, variable resolutions 

• Classes: 15 (see list above)  

• Annotation format: YOLO text lines class x_center y_center width height (values 

normalized 0-1)  

• Splits: organized as train/, valid/, test/, each with images/ and labels/ sub-folders  

• Preparation: the accompanying Python script (prepare_traffic_signs.py) downloads the 

Kaggle archive, recreates the folder layout and edits data.yaml so that Ultralytics YOLO 

recognizes the three splits. 

Model Architecture 

The detector core is once again Ultralytics YOLOv8-s. We export the model from PyTorch to 

ONNX (FP32). At inference, the network produces bounding-box coordinates, objectness scores 

and class logits for the five target object categories. 

Training 

The predefined splits (3 471 / 998 / 500) were retained. Training ran for 20 epochs with 

stochastic gradient descent (initial LR = 0.01, momentum = 0.937, weight-decay = 5 × 10⁻⁴). A 

binary-cross-entropy focal loss handled the multi-class logits, and detections below a 

confidence of 0.25 were ignored during loss computation. Automatic mixed precision (AMP) 

reduced memory footprint. 

To improve robustness to scale and illumination, the standard YOLOv8 augmentation stack 

(mosaic, mix-up, random affine, HSV jitter) was supplemented with random motion-blur and 

Gaussian-noise layers—crucial for the small, high-contrast glyphs of speed-limit signs. Training 

used a batch size of 16 at 640 × 640 resolution with NVIDIA DALI pre-fetching on Jetson 

hardware. The evolution of box/cls/DFL losses plus precision, recall and mAP@0.5 metrics is 

plotted in Figure 45, showing convergence by epoch 32 and negligible over-fitting thereafter. 
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Figure 44 YOLOv8 Architecture23 

Testing 

The traffic sign detector was evaluated on the held-out test split of 500 images. At the 

conclusion of training, the model achieved a precision of 0.81, recall of 0.74, mAP@0.5 of 0.79, 

and mAP@0.5–0.95 of 0.46. 

 
23 https://blog.roboflow.com/what-is-yolov8/ 
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In Figure 46 is illustrated a selection of validation images with predicted bounding boxes and 

confidence scores overlaid: 

 

Figure 45: Training and validation performance of the model architecture. 

 

Figure 46: Validation images with predicted bounding boxes and confidence scores. 
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The confusion matrix in Figure 47 highlights occasional misclassifications between adjacent 

speed-limits (e.g., 70 ↔ 80 km h⁻¹) due to nearly identical glyphs; Stop and light classes remain 

highly separable. 

 

Figure 47: Confusion Matrix highlighting occasional misclassifications. 

Overall, the detector delivers robust multi-class performance but would benefit from additional 

fine-grained shape or font augmentations to further disambiguate neighboring speed-limit 

signs. 

Deployment 

The traffic-sign pipeline executes on the Jetson Orin AGX via ONNX Runtime + CUDA. Each 

camera frame is resized, forwarded through the ONNX graph (~6 ms latency at 60 FPS) and 

filtered at 0.25 confidence. Detections are written to the shared-memory fusion layer and 

ingested by the onboard LLaMA 3-8B LLM, enabling context-aware actions—for instance, 

emitting a speed-limit-exceeded alert or reminding the driver to stop at an upcoming sign. 

Future work will explore class-balanced focal loss to further curb speed-limit confusions, and 

lens-distortion augmentation for wide-angle dashboards. 
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3.2. Multi-agent cooperative situational awareness and scene analysis  

3.2.1. Realize cooperative situational awareness using standard V2X messages 

format  

This subsection describes the list of relevant standardized vehicle to everything (V2X) messages 

to test and validate cooperative situational awareness scenarios, that is applicable in US/North 

America and European. It also describes a simulation-based test and validation method for 

cooperative situational awareness scenarios using V2X messages.  

Standardized V2X messages based on SAE J2735 Standards 

SAE J2735 is standard that defines V2X messages sets to support interoperability among V2X 

applications for cooperative connected automated driving system 24 and it is mostly used in 

North America and Asian countries. It includes various V2X messages to exchange road safety 

information between vehicles (V2V), vehicle and infrastructure (V2I), and vehicle and 

pedestrian (V2P). 

The basic safety message (BSM) is used in a variety of vehicle safety applications to exchange 

vehicle safety data. It periodically broadcast the status information such as vehicle's location, 

speed, acceleration, direction, brake status, etc. so that surrounding vehicles and Vulnerable 

Road Users (VRU), such as pedestrians, cyclists, or road workers, can understand the situational 

awareness in real time, and use it to prevent potential collisions for improving driving safety. 

This message is mainly divided into two parts; while part 1 includes essential data including 

basic vehicle status information, part 2 contains auxiliary data necessary to perform the service. 

The Personal Safety Message (PSM) is used to broadcast safety data regarding the kinematic 

state of various types of VRU, such as pedestrians, cyclists, or road workers. It includes safety 

data of VRUs such as location, moving speed, direction, path prediction, etc to allow 

surrounding road users to recognize them and reduce the risk of collision. 

The signal phase and timing (SPAT) message is used to convey the current status of one or more 

signalized intersections, so that cooperative connected automated driving system or human 

driver can recognize current movement status of each active phase information in advance 

when approaching an intersection and drive safely. This message includes information on the 

current status (i.e. red, green, etc.) and expected changing time (remaining time, etc.) of traffic 

lights at one or more the intersection. Especially, along with the MAP message, that describes a 

 
24 https://www.arc-it.net/html/standards/standard17.html  

https://www.arc-it.net/html/standards/standard17.html
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geometric layout of an intersection, the road user of this message can determine the state of 

the signal phasing and when the next expected phase will occur.  

MAP message conveys geographical road information of intersections and road structures. It 

includes lane positions, directions, connection relationships, boundary information, etc., 

allowing vehicles to accurately recognize road structures. 

RoadSideAlert (RSA) is used to broadcast alerts for nearby hazards to surrounding road users. 

This message provides simple alerts to road users including mobile hazards (i.e., construction 

zones, and roadside events are expected to be most frequently used.  

Standardized V2X messages based on ETSI ITS Standards 

ETSI ITS Message, a European standard, is a V2X message standard for V2V and V2I 

communication defined by the European Telecommunications Standards Institute (ETSI). It 

includes cooperative situational awareness information such as real-time location, speed, and 

hazardous situations those are key components for implementing C-ITS in Europe. 

The Cooperative Awareness Message (CAM) is a safety message that periodically transmits 

current status information of vehicle such as the location, speed, direction, and size to help 

surrounding vehicles and infrastructure recognize the current status of the vehicle in real time 
25. 

Decentralized Environmental Notification Message (DENM) is an event-based warning message. 

It is used to broadcast emergency notifications to surrounding vehicles when abnormal or 

dangerous situations such as accidents, sudden braking, and obstacles on the road occur 26. 

VRU Awareness Messages is the safety message to enable communication between cooperative 

automated driving systems and VRUs, such as pedestrians and cyclists. It is used to improve 

road safety by alerting driver/or cooperative automated driving system to periodically 

broadcast the presence and location of VRUs, allowing them to take necessary precautions 27.  

Car2X based test and validation of cooperative situational awareness scenarios 

Vector’s Car2x is a simulation tool that allows to exchange of status information with vehicles 

or infrastructure based on standardized V2X messages 28. It also supports data exchange with 

 
25 
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.02_60/en_30263702v010302p.pdf  
26 
https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.03.01_60/en_30263703v010301p.pdf  
27 https://www.etsi.org/deliver/etsi_ts/103300_103399/10330003/02.01.01_60/ts_10330003v020101p.pdf  
28 https://www.vector.com/gb/en/products/products-a-z/software/canoe/option-car2x/  

https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.02_60/en_30263702v010302p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.03.01_60/en_30263703v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103300_103399/10330003/02.01.01_60/ts_10330003v020101p.pdf
https://www.vector.com/gb/en/products/products-a-z/software/canoe/option-car2x/
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PC5 based V2X communication modules and CAN communication module through the Vector’s 

VN4610 device that is linked with the Car2x via the IEEE 802.11p or 3GPP C-V2X PC5 as well as 

CAN. It allows to generate risk scenarios between road users based on standardized V2X 

messages including J2735 and ETSI ITS standards and to verify cooperative situational 

awareness scenarios in vehicle in the loop (VIL). Additionally, the Morai Sim that is the digital 

twin-based cooperative automated driving simulator supports VIL simulation by linked with 

Car2X via UDP communication to display all status information of virtual and real objects as 

depicted in Figure 48.  

 

Figure 48: VIL simulation in Morai Sim showing status information of virtual and real objects. 

The Car2x as an VIL simulation mode with cooperative situational awareness test scenarios, 

generates relevant V2X messages corresponding to various hazard or dangerous accident 

situations among virtual objects in virtual environment such as vehicles, VRUs, and traffic lights. 

After that the Car2X exchanges them with the real test vehicle in real test environment in real 

time so that test vehicle can recognize its virtual surroundings to test and validate cooperative 

situational awareness functions as shown in Figure 49.  

At the same time, status information of real test vehicle such as position, speed, heading angle, 

etc. is shared with the Car2X simulator via CAN bus. Therefore, the Car2X can monitor and 

report all V2X messages of virtual object as well as status information of the test vehicle in real 

time through the MAP window of the Car2X for analysing developed cooperative situational 

awareness functions as depicted in Figure 50. 

In the following two Sections, the functionality of V2X messages for situational awareness of 

AVs will be exploited in order to realize novel cooperative localization (CL) and multi-object 

detection and tracking (MOT) approaches, which rely on the exchange of relevant information 

and measurements among the involved traffic agents. 
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Figure 49: Cooperatives situational awareness test scenario generation by Car2X. 

 

Figure 50: Analysing cooperative situational awareness functions by Car2X. 

3.2.2. Cooperative localization via joint distributed learning and decision-making  

Preliminaries 

Consider a swarm of moving connected and autonomous vehicles (CAVs) at time instant t 

(Figure 51-(a)), consisting of an (arbitrary) ego vehicle i, its direct neighbors j and non-neighbors 
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n. In practice, we will exploit a star graph topology 𝒩i
(t)
, with i at its center, and neighboring 

vehicles j ϵ 𝒩i
(t)

 as leaves (Figure 51-(b)). Note that: i) each CAV possesses sensing, 

computation and computation capabilities, ii) i  and j  are considered neighbors if their 

communication and sensing range is below a threshold (i.e., 30m), and iii) the swarm might 

change dynamically over time, i.e., neighbors of ego vehicle i doesn't remain fix. The state of 

ego vehicle, as well as the others, is represented by its 3D position 𝐱𝐢
(𝐭)
= [xi

t  yi
t zi

t ]Tϵ ℝ3. As 

mentioned earlier, vehicles have sensing capabilities to sense ego-motion information, as well 

as extract relative measurements towards their neighbors. For instance, using IMU and GNSS, 

we can define the motion and self positioning models, which are also degraded by additive 

zero-mean Gaussian noise [20]: 

• Motion model: 

 𝒙𝒊
(𝒕)
= 𝑓(𝒙𝒊

(𝒕−𝟏)
, 𝒖𝒊

(𝒕)) + 𝒆𝒊
(𝒕)

       Eq. 4 

where 𝒆𝒊
(𝒕) ∼ 𝒢(0,√𝑹𝒊

(𝒕)). Function 𝑓(∙) takes the form of the constant velocity motion model 

[23], due to its simplicity: 𝑓 = 𝑨𝒙𝒊
(𝒕−𝟏)

+ 𝑩𝒖𝒊
(𝒕)

, where 𝑨 =  𝕀𝟑  and 𝑩 = 𝑑𝑖𝑎𝑔(𝑑𝑡, 𝑑𝑡, 𝑑𝑡) . 

Control input vector 𝒖𝒊
(𝒕)
= [𝑢𝑖

(𝑥,𝑡) 𝑢𝑖
(𝑦,𝑡)

 𝑢𝑖
(𝑧,𝑡) ]

𝑇

𝜖 ℝ3 comprises 3D velocity as measured by 

IMU sensor. 

• Self-positioning measurement model: 

 
𝒛̃𝒑,𝒊
(𝒕)
= 𝒙𝒊

(𝒕)
+ 𝒏𝒑

(𝒕)
, 𝒏𝒑

(𝒕)
∼ 𝒢(0,√𝜮𝒑) 

     Eq. 5 

Moreover, the visual sensors of camera, LiDAR and RADAR can detect and identify the bounding 

box of each nearby vehicle 𝑗, and extract relative observations with respect to the 3D centroid: 

• Relative measurement model: 

 𝑧̃𝑜,𝑖𝑗
(𝑡)

= ℎ(𝒙𝒊
(𝒕)
, 𝒙𝒋
(𝒕)
) + 𝑛𝑜 , 𝑛𝑜 ∼ 𝒢(0, 𝜎𝑜)      Eq. 6 

 

 

ℎ(∙) =

{
 
 

 
 ||𝒙𝒊

(𝒕) − 𝒙𝒋
(𝒕)||, 𝑜 = 𝑑

𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦𝑗
(𝑡) − 𝑦𝑖

(𝑡), 𝑥𝑗
(𝑡) − 𝑥𝑖

(𝑡)), 𝑜 = 𝑎𝑧

arccos
𝑧𝑗
(𝑡) − 𝑧𝑖

(𝑡)

||𝒙𝒊
(𝒕) − 𝒙𝒋

(𝒕)||
, 𝑜 = 𝑖𝑛

 

 

     
 
 
     Eq. 7 
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Deterministic function ℎ(∙)  actually models the relative distance, azimuth and inclination 

angles (𝑜 = {𝑑, 𝑎𝑧, 𝑖𝑛}) between 𝑖 and 𝑗, as measured by 𝑖, encoding the 3D positions of the 

corresponding pair. 

In addition to the measurement models, KalmaNet [21] has the potential to enhance ego 

vehicle localization by modelling system dynamics, as well as state and measurement 

covariance matrices through an RNN based deep learning architecture. To do that, it builds 

upon traditional KF to design a data driven approach that will enable the estimation of state 

𝒙̃𝒊
(𝒕)
𝜖 ℝ3  and its covariance 𝜮̃𝒊

(𝒕)
𝜖 ℝ3𝑥3. More specifically, KalmaNet's architecture aims to 

estimate the uncertainty matrices of KF algorithm. These include Kalman gain matrix 

𝑲𝒊
(𝒕)
𝜖 ℝ3𝑥3, state transition covariance matrix 𝑹𝒊

(𝒕)
𝜖 ℝ3𝑥3, predicted state covariance matrix 

 𝚺̅𝒊
(𝒕)
𝜖 ℝ3𝑥3, and matrix 𝑾𝒊

(𝒕)
𝜖 ℝ3𝑥3. The latter is defined as 𝑾𝒊

(𝒕)
= 𝑯𝒊

(𝒕) 𝚺̅𝒊
(𝒕)
𝑯𝒊
(𝒕)𝑻 + 𝑸𝒊

(𝒕), where 

𝑯𝒊
(𝒕) corresponds to the jacobian matrix of a generic measurement function with respect to 

predicted  𝐱̅𝒊
(𝒕)

 (by motion model Eq. 4). When only GNSS measurement is available, 

measurement vector 𝒛̃𝒊
(𝒕)
= 𝒛̃𝒑,𝒊

(𝒕)
 and 𝑯𝒊

(𝒕) = 𝕀𝟑. Measurement covariance matrix is denoted by 

𝑸𝒊
(𝒕)
𝜖 ℝ3𝑥3. Using these estimated matrices, KalmanNet computes the updated state estimate 

𝒙̃𝒊
(𝒕)

 and its covariance 𝜮̃𝒊
(𝒕)

 following the standard KF equations. The network takes as input the 

current and previous measurement vectors 𝒛̃𝒊
(𝒕)

 and 𝒛̃𝒊
(𝒕−𝟏)

, the previous state estimates 𝒙̃𝒊
(𝒕−𝟏)

, 

 𝐱̅𝒊
(𝒕−𝟏)

, and  𝐱̅𝒊
(𝒕−𝟐)

, the control input vector 𝒖𝒊
(𝒕), and the time interval 𝑑𝑡. Therefore, the 

equations of KF can be reformulated as: 

 𝑲𝒊
(𝒕)
, 𝑹𝒊

(𝒕)
,  𝚺̅𝒊

(𝒕)
,  𝐖𝒊

(𝒕)
= 𝐾𝑎𝑙𝑚𝑎𝑛𝑁𝑒𝑡𝜃𝑖(∙) 

     Eq. 8 

 𝒙𝒊
(𝒕)
=  𝐱̅𝒊

(𝒕)
+𝑲𝒊

(𝒕)( 𝒛̃𝒊
(𝒕) −  𝐱̅𝒊

(𝒕)
)      Eq. 9 

 𝜮̃𝒊
(𝒕)
=  𝚺̅𝒊

(𝒕)
−  𝚺̅𝒊

(𝒕)
𝑲𝒊
(𝒕)      Eq. 10 

The network's architecture consists of three gated recurrent units (GRUs) interconnected with 

fully connected layers, that allow in a cascaded manner to capture 𝑹𝒊
(𝒕)

,  𝚺̅𝒊
(𝒕)

 and  𝐖𝒊
(𝒕)

. 

Apparently, the learned 𝑹𝒊
(𝒕)

 is used to capture  𝚺̅𝒊
(𝒕)

, which in turn obtains  𝐖𝒊
(𝒕)

, while both 

 𝚺̅𝒊
(𝒕)

 and  𝐖𝒊
(𝒕)

 are used to produce  𝐊𝒊
(𝒕)

. The latter, being equal to   𝐊𝒊
(𝒕)
=

 𝚺̅𝒊
(𝒕) 𝐇𝒊

(𝒕)𝐓(𝑾𝒊
(𝒕))

−𝟏

, actually summarizes in a compact manner the underlying uncertainty of 

the system. Therefore, by exchanging and aggregating only the specific weights that are used to 

compute Kalman gain matrix, instead of the whole number of network's parameters, each 

vehicle will be capable of efficiently train its local model to learn Kalman gain in a distributed 

manner. Thus, based on measurement models Eq. 4-Eq. 6, as well as KalmaNet's architecture 

and Kalman gain properties, we will formulate in the following the proposed joint distributed 
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learning and decision-making scheme, that will enable ego vehicle 𝑖 to estimate its own as well 

as its neighbors' 3D positions, in the form of state vector  𝒙̂𝒊
(𝒕)𝜖 ℝ3|𝒩𝑖

(𝑡)
|, realizing the goal of 

continual cooperative situational awareness. 

 

Figure 51: Distributed optimization in learning and decision-making is realized by adaptive multi-agent swarms, where each 
agent cooperates with its neighbors to address individual limitations. Note at the right, the star topology that is formulated by 

the (arbitrary) ego vehicle 𝑖, based on communication and sensing range. 

Learning stage via federated learning 

In this Section, the distributed learning stage of the proposed methodology will be formulated. 

Instead of a traditional server-based federated learning (FL) process, ego vehicle will now act as 

the aggregation center enabling a serverless learning approach. Moreover, since Kalman gain 

captures the underlying uncertainty of the system, only the layers that are used to learn Kalman 

gain will be transmitted to the ego vehicle, keeping the others intact. In that way, a 

personalized FL strategy will also be formulated, facilitating a continual and cost-efficient 

learning process, since transmitted personalized layers consist of a very small number of 

parameters.  

Serverless personalized training 

To establish the serverless personalized training, it is assumed that each vehicle belonging to 

𝒩𝑖
(𝑡)

 participates also to the distributed learning process. More specifically, each 𝑗 𝜖 𝒩𝑖
(𝑡)

, 

utilizes its local training dataset 𝒟𝑗 = {𝒁̃
𝒋

𝟏:𝑻𝒋 , 𝑿
𝒋

𝟏:𝑻𝒋}, which contains an input trajectory as 

measured over time by its own sensors (GNSS, IMU, etc.), as well as the corresponding ground 

truth (or target) trajectory. More specifically, 𝑇𝑗 is the length of training trajectories, input 

𝒁̃
𝒋

𝟏:𝑻𝒋 = [𝒛̃𝒋
(𝟏)… 𝒛̃

𝒋

(𝑻𝒋)]  𝜖 ℝ6𝑥𝑇𝑗  contains the noisy 3D positions and velocities for the 

corresponding training trajectory, while target 𝐗
𝐣

𝟏:𝐓𝐣 = [𝐱𝐣
(𝟏)… 𝐱

𝐣

(𝐓𝐣)]  ϵ ℝ3xTj  contains the 
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corresponding ground truth 3D trajectory. Note that input 𝐙̃
𝐣

𝟏:𝐓𝐣  is derived from measurement 

models Eq. 4 and Eq. 5.  

Each vehicle trains its local KalmaNet model using its own private dataset, following Eq. 8-Eq. 

10 and the corresponding KalmaNet architecture from Figure 52. In order to address potential 

limitations of local datasets regarding different noise statistics (e.g., GNSS operation in urban 

environments or urban canyons, etc.), an FL strategy that enables the collaboration of vehicles 

so that can efficiently learn a more robust KalmaNet has been already proposed in [22]. 

However, it requires a central node and a group of vehicles to be synchronize offline so that the 

whole process is effectively orchestrated. Based on that limitation, we will derive the much 

more dynamic approach of PFedKalmaNet, where an ego vehicle will now act as the central 

node performing models' aggregation, while its connected neighbors transmit only specific 

layers of the original architecture so as to facilitate the communication exchange. Those 

personalized layers of original network are used to capture the most important information 

about the underlying uncertainty, i.e., Kalman gain, and for that task two scenarios will be 

investigated: i) personalized layer that corresponds to the fully connected layer of Kalman gain 

FCKG(with pink color), ii) personalized layers that correspond to GRU 1, 2 and 3 (with red color 

in Figure 52), used for learning matrices 𝐑𝐢
(𝐭)

,  𝚺̅𝐢
(𝐭)

 and  𝐖𝐢
(𝐭)

. The first scenario focuses on 

aggregating around 10K or 50% of the total number of parameters by focusing directly to 

Kalman gain, while in the second one around 5K parameters or 20% of the total number of 

parameters are to be exchanged and aggregated.  

Adaptation step 

At the adaptation step, each vehicle j relies on the traditional KF algorithm to learn the Kalman 

gain  𝐊𝐣
(𝐤)

 through local KalmanNet KalmanNetθj(∙) . Note that learning  𝐊𝐣
(𝐤)

  inherently 

incorporates the learning of additional uncertainty matrices (see Eq. 8 and Figure 52). In the 

proposed framework, the local KalmaNet is trained end-to-end using the local dataset. In more 

detail, let 𝛉𝐣 denote the trainable parameters of the local network, and γj be a regularization 

coefficient. Each agent employs an ℓ2-regularized mean-squared error loss and stochastic 

gradient descent [21] to optimize its local model, defined as follows: 

ℓ𝑗(𝜽𝒋) =
1

𝑇𝑗
∑||𝒙̃𝒋

(𝒌)(𝒛̃𝒋
(𝒌); 𝜽𝒋) − 𝒙𝒋

(𝒌)||
2

2
𝑇𝑗

𝑘=1

+ 𝛾𝑗 ||𝜽𝒋||
2

2

 

        
    Eq. 11 

where 𝒙̃𝒋
(𝒌)(𝒛̃𝒋

(𝒌); 𝜽𝒋)is the output state estimation of the local KF parametrized by 𝒛̃𝒋
(𝒌) and 𝜽𝒋. 

However, the latter is rather composed of two sets of personalized and non-personalized 

parameters: 
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𝜽𝒋 = {𝑝𝑒𝑟𝑠(𝜽𝒋), 𝑛𝑜𝑛 − 𝑝𝑒𝑟𝑠(𝜽𝒋)}      Eq. 12 

where as mentioned before, 𝑝𝑒𝑟𝑠(𝜽𝒋) contains the parameters of either 𝐹𝐶𝐾𝐺  or 𝐺𝑅𝑈 1,2 and 

3 layers: 

𝑝𝑒𝑟𝑠(𝜽𝒋) = {
 𝐹𝐶𝐾𝐺 (𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1)

𝐺𝑅𝑈 1,2 and 3 (scenario 2)
 

      Eq. 13 

In practice, Eq. 13 state that end-to-end training is performed in a twofold manner: initially, 

personalized layers are frozen and only non-personalized layers are updated through   Eq. 11, 

and then, personalized layers are also fine tuned (typically with much less epochs). We adopt 

this training process, aiming to increase the performance, as well as the ability of the local 

model to generalize across multiple datasets, by exchanging and aggregating only the 

personalized layers of each 𝑗 𝜖 𝒩𝑖
(𝑡)

. After all participating vehicles have updated their local 

KalmaNets using   Eq. 11, the combination step is following. 

Combination step 

The goal of this step is to develop a model that captures underlying system dynamics and 

accurately estimates uncertainty matrices using local datasets in a communication efficient 

manner and without the need of exchanging the whole number of network's parameters. As 

such, each 𝑗 𝜖 𝒩𝑖
(𝑡)
\𝑖, transmits to the ego vehicle their personalized layers 𝑝𝑒𝑟𝑠(𝜽𝒋) (from Eq. 

13). Ego vehicle, along with its own personalized layers, aggregates the local layers using the 

averaging fusion rule: 𝑝𝑒𝑟𝑠(𝜽𝒈) =
1

|𝒩
𝑖
(𝑡)
|
∑ 𝑝𝑒𝑟𝑠(𝜽𝒋) ∀𝑗 ∈ 𝒩

𝑖
(𝑡) , where 𝑝𝑒𝑟𝑠(𝜽𝒈)  denotes the 

global personalized layers that will be common across the vehicles of the swarm.  Ego vehicle 

broadcasts those parameters to the connected neighbors. Each vehicle then initializes only the 

personalized layers of the local KalmaNet model with those parameters, keeping the other 

layers intact. This iterative process is repeated for 𝑀 communication rounds, enabling the local 

models to continuously improve through the global personalized layers. This is done in a highly 

efficient communication manner, since even with a very small number of parameters that are 

exchanged and fused, local models are capable of achieving comparable performance if the 

whole network's parameters are exchanged. In the same context, note also that very limited 

communication rounds are required for attaining high accuracy. 

Thus, the serverless PFedKalmanNet-L method is realized by a two step process: adapt, i.e., 

training the local KalmaNet using KF algorithm and the local private dataset, and combine, i.e., 

aggregating the personalized layers of each 𝑗 𝜖 𝒩𝑖
(𝑡)

 at the ego vehicle side, broadcasting the 

global personalized layers back to the neighbors, and keeping the local non-personalized layers 

intact: 
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𝐴𝑑𝑎𝑝𝑡 ∶  

{
 

 𝑲𝒋
(𝒌)
= 𝐾𝑎𝑙𝑚𝑎𝑛𝑁𝑒𝑡𝜃𝑗(∙)

𝒙̃𝒋
(𝒌)
=  𝐱̅𝒋

(𝒌)
+𝑲𝒋

(𝒌)( 𝒛̃𝒋
(𝒌) −  𝐱̅𝒋

(𝒌)
)

𝜽𝒋
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝒋ℓ𝑗(𝜽𝒋)

 

 

          
 
Eq. 14 

 

 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒 =

{
 

  𝑝𝑒𝑟𝑠(𝜽𝒈) =
1

|𝒩𝑖
(𝑡)|

∑ 𝑝𝑒𝑟𝑠(𝜽𝒋
∗)

 ∀ ∈ 𝒩𝑖
(𝑡)

𝑝𝑒𝑟𝑠(𝜽𝒋
∗) = 𝑝𝑒𝑟𝑠(𝜽𝒈)

 

         
 Eq. 15 

 

The proposed PFedKalmanNet-L approach is demonstrated in Figure 53. 

 

Figure 52: Original KalmaNet's architecture. Proposed SPFL strategy will focus on training in a distributed, serverless and 
communication efficient manner local KalmaNet's, by transmitting to ego vehicle and aggregating either the fully connected 

layer 𝐹𝐶𝐾𝐺 (pink) associated explicitly to Kalman gain or 𝐺𝑅𝑈 1, 2 and 3 layers (red). 

Decision-making stage via DNN aided Bayesian optimization 

In this Section, we will describe how the efficiently trained PFedKalmaNet can be exploited by 

the second stage of our framework, i.e., distributed decision-making for CL. Note that our 

PFedKalmaNet takes as inputs the noisy 3D position, 3D velocity and time interval, so as to 

estimate the state of a single vehicle. As such, instead of a CL approach that addresses states, 

measurements, and control inputs in a unified and compact manner like [23][24] (the latter 

used as baseline method in the following exactly due to this feature) we will realize CL by 

treating target quantities dynamically and independently, via plug-and-play operation. 
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Ego vehicle localization 

Ego vehicle initially exploits self-sensing capabilities to estimate its state, via GNSS and IMU. 

More specifically, measurement vector  𝒛̂𝒊→𝒊
(𝒕) ∈ ℝ3 of ego vehicle 𝑖 contains the GNSS position:  

𝒛̃𝒊→𝒊
(𝒕) = [ 𝑧̃𝑝,𝑖

(𝑥,𝑡)  𝑧̃𝑝,𝑖
(𝑦,𝑡)

  𝑧̃𝑝,𝑖
(𝑧,𝑡)]

𝑇

 
Eq. 16 

 

In addition, it utilizes the relative-sensing capabilities of its connected neighbors. To be more 

detailed, each connected neighbor 𝑗 𝜖 𝒩𝑖
(𝑡)

 transmits to ego vehicle the measurements 

required for the estimation of 𝑖 's state from 𝑗 's perception system. The corresponding 

measurement vector 𝒛̂𝒋→𝒊
(𝒕) ∈ ℝ3contains: 

𝒛̃𝒋→𝒊
(𝒕) =

[
 
 
 
  𝑧̃𝑝,𝑗

(𝑥,𝑡) + 𝑧̃𝑑,𝑗𝑖
(𝑡) cos𝑧̃𝑎𝑧,𝑗𝑖

(𝑡)   sin𝑧̃𝑖𝑛,𝑗𝑖
(𝑡)

𝑧̃𝑝,𝑗
(𝑦,𝑡)

+ 𝑧̃𝑑,𝑗𝑖
(𝑡) 𝑠𝑖𝑛𝑧̃𝑎𝑧,𝑗𝑖

(𝑡)   sin𝑧̃𝑖𝑛,𝑗𝑖
(𝑡)

𝑧̃𝑝,𝑗
(𝑧,𝑡) + 𝑧̃𝑑,𝑗𝑖

(𝑡) cos𝑧̃𝑖𝑛,𝑗𝑖
(𝑡)  ]

 
 
 
 

, ∀ 𝑗 ∈  𝒩𝑖
(𝑡)
\𝑖 

        
 
Eq. 17 

 

Note that each row of this vector actually corresponds to the (erroneous) 3D position of ego 

vehicle 𝑖, through simple geometric relationships. Therefore, 𝒛̂𝒋→𝒊
(𝒕)  is an estimate about ego 

vehicle's state using 𝑗's sensing capabilities, i.e., 𝑗's GNSS and LiDAR. 

For each one of those measurement vectors available to ego vehicle 𝑖, authors of [25] exploited 

a KF, to initially produce local state vectors 𝒙̃𝒋→𝒊
(𝒕) ∈  ℝ3  and covariances 𝚺̃𝒋→𝒊

(𝒕) ∈  ℝ3𝑥3 , 

  ∀ 𝑗 ∈  𝒩𝑖
(𝑡)

, which are then fused through a global fusion operation to produce the final 

estimation of 𝒙𝒈,𝒊
(𝒕) ∈  ℝ3 of ego vehicle's state. However, due to the multi-modal observations 

of diverse noise statistics, we will replace standard KF with the PFedKalmaNet, which has been 

explicitly trained to capture the uncertainty of measurements and improve the fusion. Through 

this plug-and-play operation, we will show in the following that increased localization accuracy 

can be attained. Following the methodology of [25], ATC concept of ego vehicle localization is 

split between a local and global fusion step: 

• Plug -and- Play Adapt: (∀ 𝑗 ∈ 𝒩𝑖
(𝑡)) 

 𝑲𝒋→𝒊
(𝒕)
,  𝚺̅𝒋→𝒊

(𝒕)
= PFed𝐾𝑎𝑙𝑚𝑎𝑛𝑁𝑒𝑡𝜃𝑖(∙) 

     Eq. 18 

 𝒙𝒋→𝒊
(𝒕)

=  𝐱̅𝒈,𝒊
(𝒕)
+𝑲𝒋→𝒊

(𝒕) ( 𝒛̃𝒋→𝒊
(𝒕) −  𝐱̅𝒈,𝒊

(𝒕)
)      Eq. 19 

 𝜮̃𝒋→𝒊
(𝒕)

=  𝚺̅𝒋→𝒊
(𝒕)
−  𝚺̅𝒋→𝒊

(𝒕)
𝑲𝒋→𝒊
(𝒕)       Eq. 20 
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• Combine: 

 

𝑨𝒋
(𝒕) = 𝜮̃𝒋→𝒊

(𝒕)−𝟏( ∑ 𝜮̃𝒍→𝒊
(𝒕)−𝟏

∀ 𝑙∈ 𝒩
𝑖
(𝑡)

)

−1

 

      
     Eq. 21 

 𝒙𝒈,𝒊
(𝒕)
= ∑ 𝑨𝒋

(𝒕)

∀ 𝑗∈ 𝒩𝑖
(𝑡)

𝒙̃𝒋→𝒊
(𝒕)       Eq. 22 

Note that Eq. 18 simply states that we exploit not only the learned Kalman gain, but also the 

learned predicted state covariance, explicitly utilizing PFedKalmaNet's architecture. Distributed 

decision-making is realized by ego vehicle since the latter performs both local and global 

estimation, using its own data as well as the measurements transmitted by its neighbors. 

Furthermore,  𝐱̅𝒈,𝒊
(𝒕)
= 𝑓(𝒙𝒈,𝒊

(𝒕−𝟏), 𝒖𝒊
(𝒕)) + 𝒆𝒊

(𝒕) (from Eq. 19), which indicates that global estimation 

depends on the global state vector of time instant 𝑡 − 1, rather than specific local estimation 

corresponding to individual neighbors. This important fact demonstrates once again the ability 

of our approach in dynamically addressing the swarm topology's modifications over time, i.e., 

which vehicles exit or enter the swarm, not only at the learning but also at the decision-making 

stage. 

Neighbors localization 

The same methodology is followed by ego vehicle 𝑖 to localize the connected neighbors, and 

realize effective cooperative situational awareness. As such, for each  {𝑘 ∈  𝒩𝑖
(𝑡)\𝑖}, ego 

vehicle utilizes neighbor's GNSS, as well as its own GNSS and LiDAR, to formulate the 

corresponding measurement vectors 𝒛̃𝒋→𝒌
(𝒕) ∈ ℝ3. Since in practice the perception capabilities of 

both ego vehicle and its direct neighbor are exploited, index 𝑗 for this specific formulation 

belongs to set 𝒩𝑖𝑘
(𝑡). The latter set contains  only 𝑖 and 𝑘, modeling in fact the individual 

connected pairs of the original star topology. As such, using the measurement vectors 𝒛̃𝒊→𝒌
(𝒕)  

(from 𝑖's LiDAR and GNSS) and 𝒛̃𝒌→𝒌
(𝒕)  (from 𝑘's transmitted GNSS), where 𝑗 is equal to either 𝑖 or 

𝑘, we end up to a similar ATC approach as previously, for estimating 𝑘's position 𝒙̃𝒈,𝒌
(𝒕) ∈  ℝ3. 

Therefore, using PFedKalmaNet as a plug-and-play, 𝑖 is capable of localizing itself as well as 

each one of its connected neighbors. Thus, collecting vectors 𝒙̃𝒈,𝒊
(𝒕) and 𝒙̃𝒈,𝒌

(𝒕) , 𝑖 defines the target 

location vector 𝒙̂𝒊
(𝒕) ∈  ℝ3|𝒩𝑖

(𝑡)
| of cooperative situational awareness. The proposed approach of 

PFedKalmaNet-D is demonstrated in Figure 53. 
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Figure 53: PFedKalmaNet framework in adaptive swarms of CAV. Ego vehicle is acting as the fusion center in both cases, 
avoiding the need for a centralized server based architecture. Left: Distributed learning stage via SPFL. Right: Distributed trained 

PFedKalmaNet is then used at distributed decision-making stage for effective cooperative situational awareness. 

Experimental Setup  

The proposed methodology will be validated using a CAV software simulation stack (Figure 54-

a)), comprised of CARLA, SUMO and Artery (for implementing V2V communication based on 

ETSI ITS-G5 protocols), interconnected through ROS software [25], all of them running in an 

NVIDIA Jetson TX2 platform. Using this stack, we generated the trajectories of 60 vehicles, with 

length T = 3000  time instances, shown in Figure 54-(b), where ego vehicle's trajectory 

corresponds to vehicle id 0. Each trajectory is split, between the first 900 time instances for 

testing, next 1680 time instances for training and the final 420 for validation. The input to the 

network is the ground truth 3D trajectory degraded by additive white Gaussian noise of zero 

mean and standard deviation 𝚺𝐩 = diag(1.5m, 1.5m, 1.5m). Individual local models are trained 

offline for 50 epochs and batch size is equal to 1, while learning rate and weight decay are set 

to 0.3. The learning stage of our approach is initiated every 100 time instances, using 2 

communication rounds, and 10 epochs for training and fine tuning during SPFL. Baseline 

methods include cooperative and optimization based MSMV [26], LKF-SA [24], and the data-

driven based single KalmaNet [21]. GNSS noise is generated through 𝚺𝐩 =

diag(3.5m, 3.5m, 3.5m), while σd,az,in = 1m, 4
o, 4o. Evaluation metrics include RT − LE (m), 

i.e., root mean square of euclidean localization error over time for the ego vehicle, and 𝑅𝑇 −

𝐿𝐴𝐸 (𝑚), i.e., root mean square of average euclidean localization error over time for the 

neighborhood of ego vehicle, so as to assess 4D situational awareness accuracy. 
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Evaluation study 

 
Figure 54: Simulation stack based on CARLA, SUMO and Artery, using ROS as middleware, and 60 vehicles' trajectories. Ego 

vehicle's is shown in black. 

Impact of personalization: The first testing scenario will assess the performance with respect to 

the two different approaches of personalization, assuming communication range 30m. More 

specifically, our evaluation will consider initially the optimal case of using a centralized model 

trained using the data across all 60 vehicles, the case of using a model trained with the 

individual dataset of ego vehicle, and three additional cases of distributed training: i) serverless 

FL without personalization, i.e., ego vehicle receives from neighbors and aggregates the total 

number of parameters, ii) SPFL exploiting scenario 1, and iii) SPFL exploiting scenario 2, both 

from Eq. 13. The results are demonstrated in Figure 55. The first two columns clearly indicate 

the benefits of using a model trained with diverse datasets. Centralized model is clearly 

superior than its individual counterpart and the other methods, though it requires a centralized 

server-based processing architecture. To realize cost-efficient and practical distributed training, 

all three serverless based FL approaches achieved very promising results. Although serverless FL 

without personalization attained the greatest accuracy, it performed much less communication 
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efficiently since it requires to exchange the total number of parameters. Most importantly, 

both SPFL strategies achieved superior results than all the baseline methods, but less efficiently 

than the previous case, as expected. Moreover, the strategy of aggregating only the layer of 

Kalman gain is shown to be much more effective, since it directly aims to learn this critical 

uncertainty matrix. The accuracy of location awareness estimation reaches 𝟏. 𝟖𝟖𝐦, i.e., 17% 

and 69% improvement with respect to single KalmaNet and GNSS. The communication 

efficiency reaches 50%, since almost half of network's parameters need to be exchanged. The 

second personalization strategy achieves less accurate results, though outperforming once 

again the baseline methods, reaching greater communication efficiency of 80%, due to the 

significantly smaller number of transmitted parameters. As such, PFedKalmaNet realizes 

effective joint distributed learning and decision-making for cooperative localization via SPFL, 

but with a trade-off in location accuracy versus communication efficiency. In the following, we 

will adopt the first personalization strategy due to greater accuracy.   

Effectiveness of fusion operation: The second scenario will assess the accuracy of fusion 

operation by comparing PFedKalmaNet with MSMV (upon which has been built), when the 

latter exploits the actual uncertainty of positioning measurements. In highly dynamic traffic 

conditions, it is very challenging to determine beforehand the true covariance of positioning 

noise, but we will assume it so as to evaluate how accurate the underlying uncertainty is 

utilized by our approach. We will define three different levels of positioning noise with 

covariances Σp
1 = diag(0.82, 0.82, 0.82) , Σp

2 = diag(1.62, 1.62, 1.62)  and Σp
3 =

diag(3.02, 3.02, 3.02) that will be used by MSMV in order to estimate Kalman gain. The results 

in Figure 56 indicate that MSMV performance is highly improved when the uncertainty of 

measurements is exploited (third versus second row), but from the first two columns 

PFedKalmaNet is shown to be much more effective in capturing the uncertainty, improving 

single GNSS by 52% and 70%. However, when positioning is increased in the third case, optimal 

and ideal MSMV is shown to perform more accurate than our method, i.e., 1.39m versus 1.6m, 

respectively, indicating that addressing higher levels of measurement noise via PFedKalmaNet 

is a more challenging task. However, since our method is focused on learning and exploiting the 

uncertainty, location awareness accuracy is still very promising. 

Impact of diverse swarm topologies and network delay: A critical aspect of our approach is 

how the neighborhood of the ego vehicle is formulated. In the previous scenarios, we have 

assumed that sensing and communication range is 30m, i.e., all vehicles within a distance of 

30m from ego vehicle can be considered as connected neighbors. To simulate now realistic V2V 

connections, we exploit the software simulation stack and the local dynamic maps (LDMs) that 

Artery simulator generates (Figure 54-(a)). The information of LDM indicate the V2V messages 

that ego vehicle has received, and as such, we can easily define the neighborhood at each time 
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instant. Those messages, apart from vehicle ID, include also the generation timestamp. 

However, due to network congestion, limited communication resources, etc., network delay 

may affect the performance of cooperation, since vehicles receive outdated measurements. 

Therefore, if only the difference between the current timestamp and the incoming message 

generation timestamp is lower than a threshold of some ms, nearby vehicle can be considered 

as neighbor. An example of ego vehicle's neighborhood is shown Figure 54-(a), where bullets 

represent vehicles and green links the V2V connections. The results of our study are 

summarized in Figure 57. For example, with time threshold equal to 100ms, ego vehicle has 

only 1 neighbor but exactly due to the smaller size of neighborhood, PFedKalmaNet  performs 

less efficient than single KalmaNet, i.e., 2.92m  with respect to 𝟐. 𝟏𝟏𝐦 . When average 

neighborhood size increases to 4 with time threshold equal to 300ms, PFedKalmaNet optimally 

combines acceptable network delay with appropriate neighborhood size. It actually attains 

RT − LE equal to 𝟏. 𝟗𝟏𝐦, with respect to  2.28m that KalmaNet has achieved, but significantly 

outperforming the other baseline methods. When the time threshold is equal to 500ms, 

neighborhood size further increases, but due to the more profound impact of receiving and 

fusing outdated measurements, PFedKalmaNet achieves now RT − LE of 𝟐. 𝟎𝟒𝐦, but still 

attaining greater accuracy than the other approaches. The last case actually corresponds to the 

ideal case of fully synchronized messages and no network delay, with the size of neighborhood 

now reaching 10 vehicles, and PFedKalmaNet  achieving 1.58m, with respect to 2.32m, 2.07m, 

1.71m and 6.05m of KalmaNet, MSMV, LKF-SA and GNSS, respectively. Therefore, we conclude 

that PFedKalmaNet has the potential to effectively exploit and fuse in a scalable manner the 

data of diverse swarm topologies, formulated by realistic network conditions and acceptable 

network delay. 

 

Figure 55: Impact of diverse levels of personalization in location awareness (RT-LAE (m)). 
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Figure 56: Effectiveness of fusion operation (RT-LAE (m)) is increased/decreased when positioning noise is lower/higher. 

 
Figure 57: Impact of the number of connections RT-LE(m). No time threshold assumes that all incoming messages are fully 

synchronized. 

3.2.3. Cooperative multi-object detection & tracking via graph signal processing 

optimization  

System model and preliminaries 

Consider a tracking-by-detection paradigm, since it is widely employed in MOT literature, as the 

foundation of our early cooperative tracking framework. Each agent 𝑖 obtains 𝑀𝑖  3D bounding 

boxes at time 𝑡 from the output of a 3D detector on LiDAR data. Each 3D bounding box is 

described by 𝒙𝑫
(𝒊,𝒎,𝒕)

= [𝑥𝑖,𝑚 𝑦𝑖,𝑚 𝑧(𝑖,𝑚) 𝜃𝑖,𝑚 ℎ𝑖,𝑚 𝑤𝑖,𝑚 𝑙𝑖,𝑚]
𝑇
𝜖  ℝ7  with 𝑚 = 0,1,… ,𝑀𝑖  where 

𝑥𝑖,𝑚, 𝑦𝑖,𝑚, 𝑧𝑖,𝑚 is the centroid of the bounding box, 𝜃𝑖,𝑚 the angle around the z-axis, and 

ℎ𝑖,𝑚, 𝑤𝑖,𝑚, 𝑙𝑖,𝑚 the height, width, and length. Hence, the set of detections of agent 𝑖 at time 

instance 𝑡  is described by 𝒟𝑖
𝑡 = {𝒙𝑫

(𝒊,𝟏,𝒕), 𝒙𝑫
(𝒊,𝟐,𝒕), … , 𝒙𝑫

(𝒊,𝑴𝒊,𝒕) } 𝜖  ℝ𝑀𝑖 𝑥 7 . Furthermore, at time 

instant 𝑡, the state of tracked object 𝑟 is defined by 𝒙𝑻
(𝒓,𝒕)

= [𝑥𝑟 𝑦𝑟 𝑧𝑟 𝜃𝑟 ℎ𝑟 𝑤𝑟 𝑙𝑟 𝑢𝑥𝑟  𝑢𝑦𝑟  𝑢𝑧𝑟]
𝑇
𝜖 

ℝ10, where 𝑥𝑟, 𝑦𝑟, 𝑧𝑟 represent its centroid, 𝜃𝑟 the angle around z-axes, ℎ𝑟, 𝑤𝑟, 𝑙𝑟 the height, 

width, length, and 𝑢𝑥𝑟, 𝑢𝑦𝑟, 𝑢𝑧𝑟 the 3D linear velocity, respectively. Note that the tracked object 

is the expected outcome of the cooperative tracking, therefore it is not directly related with a 

specific agent. Based on that, we will employ a state transition model, as well as a 

measurement model, in order to perform Kalman filtering: 
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• State transition model: 

 𝒙𝑻
(𝒓,𝒕)

= 𝑓(𝒙𝑻
(𝒓,𝒕−𝟏), 𝒘𝑻

(𝒓,𝒕)), 𝒘𝑻
(𝒓,𝒕) ∼ 𝒢(0, 𝛴𝑤) 

         Eq. 23 

   

• Measurement model: 

 𝒛𝑻
(𝒓,𝒕)

= 𝒙𝑻
(𝒓,𝒕)

+ 𝒏𝒑
(𝒓,𝒕)

, 𝒏𝒑
(𝒓,𝒕)

∼ 𝒢(0, 𝛴𝑛)        Eq. 24 

   
State transition function 𝑓(∙) can defined using constant velocity model. Both models are 

degraded by additive white Gaussian Noise 𝒘𝑻
(𝒓,𝒕) and 𝒏𝒑

(𝒓,𝒕)
, respectively. According to linear 

Kalman Filter, each track's state can be defined by the prediction and update equations as 

follows: 

• State Prediction 

 𝒙𝑻
(𝒓,𝒕)

= 𝑭𝒙̂𝑇
(𝐫,𝒕−𝟏)

+𝒘𝑻
(𝒓,𝒕)          Eq. 25 

 𝑷̅(𝒓,𝒕) = 𝐅𝑷̂(𝒓,𝒕−𝟏)𝑭𝑻 + 𝑸(𝒓,𝒕)          Eq. 26 

• State Update 

 𝑲(𝒓,𝒕) = 𝑷̅(𝒓,𝒕)𝑯𝑻[𝑯𝑷̅(𝒓,𝒕)𝑯𝑻 + 𝑹(𝒓,𝒕)]
−𝟏

          Eq. 27 

 𝒙̂𝑇
(𝐫,𝒕)

= 𝒙𝑻
(𝒓,𝒕)

+𝑲(𝒓,𝒕)[𝒛𝑻
(𝒓,𝒕) −𝑯𝒙𝑻

(𝒓,𝒕)
]          Eq. 28 

 𝑷̂(𝒓,𝒕) = 𝑷̅(𝒓,𝒕) −𝑲(𝒓,𝒕)𝑯𝑷̅(𝒓,𝒕) 
 

         Eq. 29 

where 𝑭 𝜖 ℝ10 𝑥 10 is the transition matrix, 𝑸(𝒓,𝒕) 𝜖 ℝ10 𝑥 10 the process noise covariance matrix, 

𝑹(𝒓,𝒕) 𝜖 ℝ10 𝑥 10 the measurement noise covariance matrix, 𝑯 𝜖 ℝ7 𝑥 10 the measurement model 

matrix, 𝑸(𝒓,𝒕) 𝜖 ℝ10 𝑥 7 the Kalman gain and 𝑷(𝒓,𝒕) 𝜖 ℝ10 𝑥 10 the covariance matrix of the tracked 

object. Finally, set 𝒯𝑡 = {𝒙̂𝑇
(𝟏,𝒕), 𝒙̂𝑇

(𝟐,𝒕), … , 𝒙̂𝑇
(𝐑𝐓,𝒕)} 𝜖 ℝ𝑅𝑇 𝑥 10, contains the state of tracked objects 

𝑟 = 1, 2, … , 𝑅𝑇, after performing Kalman filtering. Those two sets of detected and tracked 

bounding boxes will act as the basis in order to formulate the proposed framework. 

Association and Tracks Management approaches 

The Association and Tracks Management approaches constitute the core components of a 

tracking framework handling tracks' states and their lifetimes. Specifically, the Association 

module employs the 3D Intersection over Union (3D IoU) as a similarity metric, and the 

Hungarian Algorithm (HA) as an association algorithm to correlate trajectories and detections. 

Upon successful association, the track's state is updated utilizing the corresponding detection 

𝒙𝑫
(𝒊,𝒎,𝒕)

 according to Eq. 28, Eq. 29, where 𝒛𝑻
(𝒓,𝒕)

= 𝒙𝑫
(𝒊,𝒎,𝒕)

. Conversely, in case of unsuccessful 

association, the track's state retains its previous state without update. Upon unmatched 

detections, new tracks are initialized with their attributes. The Tracks Management module is 
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handling the lifetime of each track and establishes the tracking procedure after the association 

stages with detections [27], [28]. Specifically, a track is "confirmed", if it achieves a successful 

association over a predefined number of consecutive frames, denoted as ℎ𝑖𝑡𝑠. Conversely, if a 

track fails to establish an association for a specified number of consecutive steps, noted as 𝑎𝑔𝑒, 

it is considered as "dead" and is removed from further processing. 

Graph Signal Processing Preliminaries 

The Graph Laplacian operator is a well-known Graph Signal Processing Tool [29] which recovers 

the absolute coordinates of graph vertices through differential coordinates and anchor points in 

a least-squares sense. The inherent geometry of the connectivity graph is captured by 

differential coordinates of the vertices, which correspond to the barycenter of each vertex's 

neighboring nodes. Additionally, anchors are utilized as complementary information for each 

vertex. Furthermore, the Laplacian matrix captures the connections between the vertices. More 

specifically, consider an undirected graph with 𝑁𝑡 nodes represented as 𝐽𝑡 = (𝒱𝑡, ℰ𝑡), where 

𝒱𝑡 and ℰ𝑡 denote the set of vertices and edges, respectively. The objective is to define and 

minimize the cost function 𝑂(𝝊𝒕) = ||𝑳𝒕𝝊𝒕 − 𝜹𝒕||2
2 in each spatial attribute 𝑥, 𝑦, 𝑧, where 𝝊𝒕 =

[𝜐(1,𝑡) 𝜐(2,𝑡)… 𝜐(𝑁
𝑡,𝑡)]

𝑇
 𝜖 ℝ𝑁

𝑡
 is the vector of graph vertices, 𝑳𝒕 𝜖 ℝ𝑁

𝑡 𝑥 𝑁𝑡  is the Laplacian 

matrix and 𝜹𝒕 𝜖 ℝ𝑁
𝑡
 the vector of differential coordinates. Laplacian matrix is equal to 𝑳𝒕 =

𝑫𝒕 − 𝑨𝒕  where 𝑫𝒕 , 𝑨𝒕  𝜖 ℝ𝑁
𝑡 𝑥 𝑁𝑡   are the well-known degree and adjacency matrices. 

Furthermore, in each spatial attribute the differential vector is equal to 𝜹𝒕 =

[𝛿(1,𝑡) 𝛿(2,𝑡)… 𝛿(𝑁
𝑡,𝑡)] , where 𝛿(𝑖,𝑡) = ∑ (𝜐(𝑖,𝑡) − 𝜐(𝑗,𝑡))𝑁𝑡

𝒊  among all connected vertices. 

However, due to the singular properties of Laplacian matrix, we have to extend it using the 

identity matrix, leading to the extended Laplacian matrix 𝑳̃𝒕 𝜖 ℝ2𝑁
𝑡 𝑥 𝑁𝑡 , and thus, 𝜹𝒕  is 

restructured to the measurement vector 𝒃𝒕 𝜖 ℝ2𝑁
𝑡

consisting of not only differential 

coordinates but also the so-called anchor points, which contain any knowledge we have about 

each vertex. Previous quantities, as well as anchors vector 𝒂𝒕 𝜖 ℝ𝑁
𝑡
 are defined as follows: 

 𝑳̃𝒕 = [𝑫
𝒕 − 𝑨𝒕

𝑰𝒕
],   𝒃𝒕 = [𝜹𝒕 𝒂𝒕]𝑇 

 

         Eq. 30 

 𝒂𝒕 = [𝑎(1,𝑡) 𝑎(2,𝑡)…𝑎(𝑁
𝑡,𝑡)]

𝑇
          Eq. 31 

Employing linear least-squares minimization, the optimal solution of vertices' locations in each 

spatial attribute is equal to: 

 
𝝊∗
𝒕 = ((𝑳̃𝒕)

𝑇
𝑳̃𝒕)

−1

(𝑳̃𝒕)
𝑻
𝒃𝒕, 𝝊∗

𝒕𝜖 ℝ𝑁
𝑡
 

         Eq. 32 
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Graph Laplacian Processing Technique 

The Graph Laplacian Processing technique actually facilitates the localization of nodes of a 

graph by leveraging inherent geometric structure defined by the differential coordinates and 

anchors. Based on that fact, two methods will be derived, introducing the Graph Laplacian 

Cooperative MOT (CoMOT) scheme which takes advantage of a fully connected graph among all 

multi-agent detections as illustrated in Figure 58. The one-stage of association approach serves 

as the initial step for the proposed two-stage association Graph Lap CoMOT method. Both of 

the presented approaches reduce spatial noise of vehicle’s detections by smoothing the 

individual error related to the bounding box’s 3D centroid. Therefore, each bounding box is 

refined and correlated with existing tracks, enabling more accurate trajectory estimation during 

the Kalman Filter update step. More specifically, differential coordinates and Laplacian matrix 

capture the connections among all detections, while anchors are utilized for the overlapped 

detections that represent objects simultaneously observed from different agents. Although our 

methods are presented assuming two CAVs, following the standard methodology of [30], they 

can easily be generalized for a larger number of connected vehicles.  

 

Figure 58: Fully connected graph of detections from two neighboring agents 𝑖 and 𝑗 at time 𝑡. Detections from agent 𝑖 (blue 
color) are interconnected among them, and also linked to detections from agent 𝑗 (pink color). Red and black edges indicate the 

overlapped information of the object shared between the agents and all the connections of the graph, respectively. 

To be more specific, consider the undirected graph 𝐽𝑡 = (𝒱𝑡, ℰ𝑡), where the set of nodes 𝒱𝑡 =

{𝒟𝑖
𝑡 , 𝒟𝑗

𝑡} represents the detections from agent 𝑖 and 𝑗. With respect to the set of edges ℰ𝑡, the 

detections of agent 𝑖 are interconnected among them and also linked to the detections of agent 

𝑗. Note that we focus only on estimating the 3D centroid of each bounding box. Therefore, in 

each spatial attribute 𝑥, 𝑦, 𝑧 , the differential vector is equal to 𝜹𝒕 =

[ 𝛿(1,𝑡) 𝛿(2,𝑡)… 𝛿(𝑁
𝑡,𝑡)] 𝜖 ℝ𝑁

𝑡
, where 𝛿(𝑚,𝑡) = ∑ (𝑥𝑖,𝑚 − 𝑥𝑗,𝑛)

𝑀𝑗

𝑛=0 + ∑ (𝑥𝑖,𝑚 − 𝑥𝑖,𝑛)
𝑀𝑖
𝑛=0  describes 

the scalar differential coordinate of detection 𝑚. Additionally, the extended Laplacian matrix is 

defined by Eq. 30 corresponding to a fully connected graph, anchors vector 𝒂𝒕 𝜖 ℝ𝑁
𝑡
 will 

contain the scalar complimentary information of x-part of 𝒙𝑫
(𝒊,𝒎,𝒕)

 as analytically explained in the 

following, while measurement vector 𝒃𝒕 = [𝜹𝒕 𝒂𝒕]𝑻 𝜖 ℝ2𝑁
𝑡
. Similar equations are followed for 𝑦 
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and 𝑧 attributes. Thus, the refined bounding boxes, since we actually refine their 3D centroids, 

will be further used by the core modules of CoMOT in order to enhance the overall accuracy. 

All in One Stage (AOS) Graph Lap-CoMOT 

A simple CoMOT which utilizes a fully connected graph topology on multi-agent  detections is 

the proposed All in One Stage (AOS) Graph Lap-CoMOT. More specifically, this method refines 

and fuses multi-vehicle bounding boxes through the Graph Laplacian framework and thereafter, 

associates them with existing tracks. To acquire additional information at time 𝑡 for forming the 

anchors vector 𝒂𝒕, the 3D detections of the two agents 𝒟𝑖
𝑡 and 𝒟𝑗

𝑡 are associated through 3D 

IoU and HA. The set of 𝑚𝑖 overlapped detections and 𝑢𝑖  non-overlapped of the 𝑖 are described 

by 𝑚𝒟𝑖
𝑡  𝜖 ℝ𝑚𝑖 𝑥 7, and 𝑢𝒟𝑖

𝑡  𝜖 ℝ𝑢𝑖 𝑥 7, respectively. Similarly, for the agent 𝑗, 𝑚𝒟𝑗
𝑡  𝜖 ℝ𝑚𝑗 𝑥 7, and 

𝑢𝒟𝑗
𝑡  𝜖 ℝ𝑢𝑗 𝑥 7. The anchors vector 𝒂𝒕 is formed for 𝑥 spatial attribute as follows: 

 𝒂𝒕 = [𝒎𝒙𝒋,𝒎 𝒎𝒙𝒊,𝒎 𝒖𝒙𝒊,𝒎 𝒖𝒙𝒋,𝒎]
𝑇

 

 

       Eq. 33 

where 𝒎𝒙𝒊,𝒎 = [𝑚𝑥𝑖,1 𝑚𝑥𝑖,2…  𝑚𝑥𝑖,𝑚𝑖
]
𝑇
𝜖 ℝ𝑚𝑖, 𝒎𝒙𝒋,𝒎 = [𝑚𝑥𝑗,1 𝑚𝑥𝑗,2…  𝑚𝑥𝑗,𝑚𝑗

]
𝑇

𝜖 ℝ𝑚𝑗  are 

the successfully associated detections of the agent 𝑖, 𝑗 and 𝒖𝒙𝒊,𝒎 = [𝑥𝑖,1 𝑥𝑖,2… 𝑥𝑖,𝑢𝑖]
𝑇
𝜖 ℝ𝑢𝑖, 

𝒖𝒙𝒋,𝒎 = [𝑥𝑗,1 𝑥𝑗,2… 𝑥𝑗,𝑢𝑗]
𝑇

𝜖 ℝ𝑢𝑗  the unmatched bounding boxes of 𝑖 and 𝑗, respectively. 

Therefore, the least-squares minimization of Eq. 32 at time 𝑡 is noted as 𝑮𝒕 𝜖 ℝ𝑁
𝑡
and describes 

the refined and fused 𝑥 attribute of the detections. Similar equations are followed for the 𝑦, 𝑧 

attributes. The set of refined detections which consists all the attributes on each 3D bounding 

box is 𝒢𝑡 𝜖 ℝ𝑁
𝑡 𝑥 7 . Then, the optimized detections 𝒢𝑡  are associated with the existing tracks 𝒯𝑡 

in terms of 3D IoU and HA and follows the Association and Tracks Management approaches 

. Hence, the successfully associated trajectories are denoted as 𝑚𝒯𝑡 and update their states by 

Eq. 28, Eq. 29 with the successfully associated detections 𝑚𝒢𝑡. Moreover, the unsuccessfully 

associated tracks retain their previous state without update and are denoted as 𝑢𝒯𝑡, and the 

unsuccessfully associated detections 𝑢𝒢𝑡 initialize new tracks. At the next time step 𝑡 + 1, all 

active tracks are predicted by Eq. 25, Eq. 26. The AOS GraphLap CoMOT serves as the first step 

in deriving the proposed approach of the next subsection. 
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Figure 59: TSA Graph Lap-CoMOT of the Graph Lap-CoMOT approach. 

Two Stages Association (TSA) Graph Lap-CoMOT 

The Two Stages Association (TSA) Graph Lap-CoMOT technique (Figure 59) is an advanced 

extension of the AOS Graph Lap-CoMOT. This method designs two stage association modules 

to capture unmatched trajectories from the first stage and combine obtained detections from 

different agents in slightly modified definition of anchors vector. Similarly to the AOS technique, 

the detections of the two CAVs are associated in order to provide additional information on the 

overlapped bounding boxes. Different anchors vectors are formulated based on the number of 

agents. Therefore, in case of two CAVs, two anchors vectors are defined for each spatial 

attribute along 𝑥, 𝑦 and 𝑧, and demonstrated for 𝑥 according to: 

 𝒂𝒊𝒋
𝒕 = [𝒎𝒙𝒋,𝒎 𝒎𝒙𝒋,𝒎 𝒖𝒙𝒊,𝒎 𝒖𝒙𝒋,𝒎]

𝑇
 

 

         Eq. 34 

 𝒂𝒋𝒊
𝒕 = [𝒎𝒙𝒊,𝒎 𝒎𝒙𝒊,𝒎 𝒖𝒙𝒊,𝒎 𝒖𝒙𝒋,𝒎]

𝑇
 

 

         Eq. 35 

Therefore, different least-squares solutions of Eq. 32 are calculated. The fused and refined 

detections corresponding to the anchors vector 𝒂𝒊𝒋
𝒕  are represented as 𝑮𝒊𝒋

𝒕  𝜖 ℝ𝑁
𝑡
 and similarly 

to the 𝒂𝒋𝒊
𝒕  as  𝑮𝒋𝒊

𝒕 . Similar equations are followed for the 𝑦, 𝑧 attributes. Hence, the detections 

with all detections' attributes are 𝒢𝑖𝑗
𝑡  𝜖 ℝ𝑁

𝑡 𝑥 7  and 𝒢𝑗𝑖
𝑡  𝜖 ℝ𝑁

𝑡 𝑥 7 . Firstly, 𝒢𝑖𝑗
𝑡  are associated with 

the existing tracks 𝒯𝑡 as described previously. Upon successful associations,  𝑚𝒯𝑡 tracks update 

their state through the refined associated detection 𝑚𝒢𝑖𝑗
𝑡  by Eq. 28 Eq. 29. In case of 

unmatched refined detections 𝑢𝒢𝑖𝑗
𝑡 , new tracks are initialized. Additionally, the unmatched 

tracks 𝑢𝒯𝑡 are not discarded by the Tracks Management Module, instead are associated with 

the 𝒢𝑗𝑖
𝑡  refined detections. Thereafter, the Association and Tracks Management approaches 

 takes place with 𝑚𝒯𝑡, 𝑚𝒢𝑗𝑖
𝑡 , the matched tracks, optimized detections and 𝑢𝒯𝑡 and 𝑢𝒢𝑗𝑖

𝑡  the 

unmatched tracks and unmatched detections. This process continues based on the number of 
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agents. At the next time step 𝑡 + 1, all active tracks are predicted by Eq. 25-Eq. 26. Regarding 

computational efficiency, Graph Laplacian Processing is based on an efficient sparse least-

squares optimization framework, with complexity equal or lower than 𝑂((2𝑁𝑡𝑁𝑡)2)(where 

2𝑁𝑡 and 𝑁𝑡  the number of rows and columns of the corresponding Laplacian matrix, indicating 

actually the size of the topology) [31]. 

Experimental Setup and Metrics  

Experiments have been conducted in the well-known V2V4Real [32] dataset on an NVIDIA RTX 

4090 GPU. The dataset training split includes 32 driving sequences and the testing 9 driving 

sequences from two simultaneously driven vehicles. The frame rate is 10Hz. Our proposed 

method ensures real-time feasibility by sharing only the bounding box parameters among 

agents, and thus, agent 𝑗 with 𝑀𝑗 bounding boxes, has to transmit in total 𝑀𝑗 ×  7 floats, since 7 

are the parameters describing each bounding box, ensuring low latency during the 

communication. Additionally, we define the tracking parameters 𝑎𝑔𝑒 =  2, and ℎ𝑖𝑡𝑠 =  3 to 

balance robustness and adaptability. We have tested our framework in the testing sequences 

and we compared our method with the state-of-the-art V2V4Real and the DMSTrack [30], a 

deep-learning CoMOT approach. The Graph Lap-CoMOT and DMSTrack approaches utilize 

PointPillar detector [33] with 55% detection accuracy. DMSTrack sequentially associates the 3D 

detections of the ego vehicle to the tracks, and the unmatched tracks with the bounding boxes 

of the other. Also, induces noise covariance matrix for each detection which is calculated by a 

deep neural network. Furthermore, we employed the V2V4Real method using multi-agent 

CoBEV Detector [34] with higher detection accuracy (66.5%) than PointPillar for challenging 

evaluation. We employ the evaluation metrics in 3D MOT of [27] including 1) Average Multi-

Object Tracking Accuracy (AMOTA), counting the errors (False Positives (FP), False Negatives 

(FN), Identity Switches(IDSW)) with respect to Ground Truth (GT), 2) Average Multi-Object 

Tracking Precision (AMOTP) calculating the overlap between the predicted tracked objects with 

the Ground Truth objects with respect to the True Positives, 3) scaled AMOTA (sAMOTA), a 

linearized AMOTA across various confident thresholds, 4) Mostly Tracked (MT), the percentage 

of the correct tracking of objects over 80% of their life, 6) Multi-Object Tracking Precision 

(MOTP) calculating the overlap between the predicted tracked objects and GT with respect to 

the TP with 0.25 overlapping threshold. 

Evaluation Study 

Figure 60 demonstrates the performance of the TSA Graph Lap-CoMOT method and the two 

baseline methods on average across all testing sequences from the V2V4Real dataset. The TSA 

Graph Lap-CoMOT consistently achieves superior performance across the average sequences, 

with the maximum 17.3% improvement in AMOTA. Hence, the two stages association of tracks 
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with refined detections captures potential occluded objects increasing the TP, reducing FN and 

thus, performs high tracking accuracy. Furthermore, the TSA Graph Lap-CoMOT reduces the 

noise in detections through the Graph Laplacian operator and the fully connected graph 

topology in least-square minimization and thus, outperforms in the tracking precision with a 

maximum 15.99% improvement in AMOTP. Moreover, it enhances MT by 19.82% by tracking 

most objects for over of 80% of their lifetime. However, TSA Graph Lap-CoMOT performs 

0.47% below the DMSTrack in sAMOTA. Therefore, TSA Graph Lap-CoMOT achieves superior 

performance across most tracking metrics by fusing the centroids of detections and reducing 

position error in Graph Laplacian manner, while captures unmatched trajectories preventing 

false termination with the two stages association.  

 

Figure 60: Average tracking results in V2V4Real. Plus (minus) sign indicate the rate of accuracy improvement (de-crease) with 
respect to the maximum deviation of the state-of-the-art CoMOT methods. 

To further enrich our ablation study, Figure 61 demonstrates the tracking performance of both 

Graph Lap-CoMOT and DMSTrack methods on three indicative testing sequences of V2V4Real 

dataset, highlighting the benefits of two stages of association. The TSA Graph-Lap-CoMOT 

achieves superior performance with maximum improvements of 18.31%, 19.82%, 26.44%, 

33.33% in AMOTA, AMOTP, sAMOTA, MT respectively over DMSTrack. Additionally, TSA Graph 

Lap-CoMOT outperforms with maximum improvements up to 10.72%, 6.67%, 4.12%,14.29% in 

AMOTA, AMOTP, sAMOTA, MT respectively over the one stage of association, AOS Graph Lap-

CoMOT, in all evaluated metrics. This demonstrates its effectiveness in addressing unmatched 

trajectories from the first stage by preventing termination in cases of failed association 

leveraging two association stages. Moreover, the AOS Graph Lap-CoMOT accomplishes 

significant improvements across various metrics despite being a simplified and single stage 

association method of the TSA Graph Lap-CoMOT. Specifically, it achieves a 13.04% 

improvement in AMOTA and 23.03% in sAMOTA for Sequence 0002, with more TP and 

consequently fewer FN tracked objects revealing and exploiting spatial geometric structures on 

the fully connected graph instead of DMSTrack. Additionally, a 14.65% in AMOTP and a 16.67% 

in MT improvement for Sequences 0002 and 0000 demonstrate the reduced spatial error of 

multi-agent detections through the Graph Laplacian Operator. Therefore, TSA Graph Lap-

CoMOT exploits spatial coherences between multi-agent detections formulating a fully 

connected graph topology while addresses potential occluded objects with the two stages of 

association. 
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Figure 61: Ablation study on three indicative V2V4Real sequences. Plus (minus) sign indicate the rate of accuracy improvement 
(decrease) with respect to the DMSTrack 

Figure 62 highlights the impact on tracking precision when the size of graph topology increases, 

demonstrating in fact the scalability of TSA Graph Lap-CoMOT. Higher localization accuracy 

(MOTP) is achieved on average through TSA Graph Lap CoMOT when 6 TP objects appear 

across the testing sequences, despite the higher frequency of appearance in DMSTrack. 

Moreover, a maximum MOTP up to 64.55% is achieved once again by our approach, when 19 

TP objects exist across the testing sequences. Therefore, this fact emphasizes the significance of 

Graph Laplacian Processing in fusing diverse and growing number of bounding boxes. 

Finally, Figure 63 demonstrates GT, TSA Graph Lap-CoMOT and DMSTrack trajectories at frames 

91 and 130 in Sequences 0000 and 0007, with green, red and yellow colors. In all cases, we can 

clearly observe that proposed TSA Graph Lap-CoMOT significantly improved the location of 

each bounding box with respect to DMSTrack, as well as captured an object that DMSTrack 

failed to track succesfully. Therefore, TSA Graph Lap-CoMOT achieved competitive, accurate 

and precise tracking results in the real-world V2V4Real dataset. 

 

Figure 62: Impact of increasing graph topology size on MOTP on average. The 𝑥 and 𝑦 − 𝑎𝑥𝑖𝑠 demonstrate the number of True 
Positive (TP) objects per frame and average MOTP, respectively. Bullet points indicate the frequency of each TP count per frame. 

TSA Graph Lap-CoMOT enhances tracking performance as the graph topology size increases. 
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Figure 63: Qualitative results of CoMOT based on assessing tracking accuracy and precision with GT (green), TSA Graph Lap-
CoMOT (red) and DMSTrack (yellow). 

3.3. Concluding remarks 

This section has detailed the design, development, and evaluation of the AutoTRUST external 

sensing and monitoring system aimed at enabling 4D cooperative situational awareness for 

connected and automated vehicles. By combining robust single-agent perception modules with 

advanced multi-agent cooperative frameworks, the system significantly enhances 

environmental understanding, road safety, and context-aware mobility. In more detail, the 

single-agent modules—focusing on road condition and traffic sign detection—demonstrated 

efficient, real-time performance on embedded platforms using lightweight yet accurate deep 

learning models such as YOLOv8. These modules provide essential data streams for interpreting 

external scenes and contribute directly to driver assistance and autonomous decision-making. 

On the multi-agent side, the section introduced a comprehensive framework for cooperative 

localization and object tracking using federated learning and distributed inference strategies. 

Techniques, such as PFedKalmaNet and Graph Laplacian-based CoMOT, represent state-of-the-

art methods for decentralized learning and decision-making, capable of operating under real-
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world constraints such as network delays, communication efficiency, and heterogeneous sensor 

inputs. In the following section, we move away from the internal and external monitoring 

system introduced by AutoTRUST and focus on approaches that enhance the security, privacy 

and trustworthiness of the entailed AI-powered solutions. 
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4. Privacy and data trustworthiness of sensing system  
 As highlighted in the previous chapters of the deliverable, modern AVs operate as mobile data 

collection platforms, continuously gathering vast amounts of information through various 

sensing modalities (LiDARs, cameras, radar systems, etc.), and environmental monitoring 

devices. This data encompasses not only vehicle operational parameters but also detailed 

information about passengers, surrounding environments, traffic patterns, and infrastructure 

conditions. The sensitive nature of this information, combined with the need for real-time 

processing and inter-vehicle communication, creates complex privacy and security challenges 

that traditional data protection approaches are insufficient to address. Furthermore, the 

distributed nature of AV networks, where multiple vehicles must collaborate and share 

information to achieve optimal performance, introduces additional vulnerabilities and trust 

considerations that require innovative technical solutions. 

This section addresses the critical dimensions of data privacy, security, and trustworthiness in 

advanced sensing systems for autonomous and connected vehicles. To this end, the presented 

work explores both foundational and cutting-edge privacy-preserving strategies. Section 4.1 

outlines the ethical and legal frameworks guiding data handling, while Section 4.2 delves into 

federated learning methodologies and their security implications within AV contexts. Section 

4.3 focuses on the enhancement of the privacy and resolution of LiDAR-based external sensing, 

utilizing techniques such as deep unrolling as well as federated approaches, while, finally, our 

concluding remarks are presented in Section 4.4.  

4.1. Security and privacy of data, confidentiality and ethical compliance  

All technical activities will be guided by principles that prioritize safety, transparency, and 

inclusiveness, particularly for vulnerable and underrepresented user groups. The project adopts 

a proactive approach to identifying and mitigating risks associated with the collection, 

processing, and deployment of data. This ensures that development is ethically grounded and 

technologically robust. In doing so, AutoTRUST seeks to anticipate and address societal 

concerns.  

This includes adherence to the GDPR, AI Act (where applicable), and other sector-specific legal 

frameworks relevant to autonomous mobility and data processing (aligned with national and 

international requirements). All partners will receive guidance and support in implementing 

these practices through internal protocols and continuous training.  
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The project also fosters a culture of accountability and shared responsibility across institutions. 

By promoting regulatory alignment from the outset, AutoTRUST ensures legal soundness and 

ethical integrity in its research and innovation efforts. 

The project places a strong emphasis on designing adaptive systems that not only respond to 

environmental and operational uncertainties but also protect user rights and autonomy. This 

involves integrating privacy-by-design and security-by-design principles in all system layers, 

from data sensing to decision-making algorithms. Users’ trust will be enhanced through 

transparent and co-creative processes, consent mechanisms, and secure data handling. 

In the scope of WP1 (D1.2 and D1.5), the ethical and data management plan was established. 

Ethical principles and data governance strategies that guide the entire project were established, 

ensuring coherence across all technical and research activities. By being embedded from the 

early stages of the project, the plan supports proactive ethical reflection and regulatory 

alignment, while each partner ensures compliance and a homogenous approach at the local 

level. Its transversal application guarantees that all work packages contribute consistently to 

the project's overall integrity and responsibility framework. 

4.2. Privacy preservation techniques in autonomous vehicles systems  

4.2.1. Federated Learning 

Autonomous vehicles function as essential building blocks which form the basis of future 

Intelligent Transportation Systems (ITS). The development of Big Data, Internet of Things (IoT), 

edge computing, and Artificial Intelligence (AI) has expanded potential improvements for 

transportation systems through AVs, particularly by improving driving safety, reducing traffic 

congestion, and lowering pollution levels.  

The operation of AVs depends on V2X communication. This type of communication enables AVs 

to establish communication links not only with peer vehicles, but also with traffic infrastructure, 

satellites, pedestrians, and different ITS components. Additionally, under specified operational 

conditions and regulatory rules, AVs execute autonomous driving operations through sensor 

data analysis and Machine Learning (ML) algorithms.  

Currently, AVs generate vast volumes of raw data, which stems from three main sources which 

include electronic control units (ECUs), internal and external sensors, and V2X communications. 

It is transmitted either continuously or at intervals to multiple destinations, including other 

vehicles, roadside infrastructure, and cloud platforms. These data transmission supports 

multiple purposes which include traffic monitoring, congestion control, Quality of Service (QoS) 

and Quality of Experience (QoE) enhancement, and vehicle diagnostics.  
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However, these enormous amounts of data needed to train ML models have generated 

substantial concerns about data protection alongside unapproved data exploitation and privacy 

violations. In some regions, the collection of sensor data by AVs must comply with privacy 

regulations. For instance, the General Data Protection Regulation (GDPR) presents a legal 

framework that European countries have established to enforce personal data processing 

compliance with privacy standards [35].   

Despite significant progress in ML techniques, the development of secure and scalable 

centralized ML models for all vehicles has proven to be unfeasible. However, a new ML 

technique called FL has emerged as a promising solution to the problems mentioned. Figure 64 

shows the topology of FL for AVs. In FL, edge devices, including AVs, do not transmit raw local 

data to a central server. Instead, as shown in Figure 64, they share only gradients or learnable 

parameters (W1, W2, W3, ..., Wn) derived from local AI model training. A central server, called 

federated server, collects all gradients from the AVs to improve the global model which gets 

redistributed back to the AVs. Multiple communication rounds exist to achieve global model 

convergence at its optimal performance level. Using the mentioned approach, FL delivers two 

major advantages which decrease network data transfer while protecting the privacy of data 

stored on local devices [36]. 

In AVs, and in each vehicle in a FL setup, multiple types of local Artificial Neural Network (ANN) 

models could be utilized, such as Convolutional Neural Network (CNN), Multilayer Perceptron 

(MLP), Recurrent Neural Network (RNN), Transformers, and Autoencoders. These models will 

be discussed in more detail below.  

 

Figure 64: Federated Learning topology for autonomous vehicles. 
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Convolutional Neural Network: Due to its exceptional performance in visual perception tasks, 

CNNs have emerged as a key technology in the development of AVs. CNNs are excellent at 

automatically deriving hierarchical features from unprocessed pixel data, which allows them to 

analyse images and videos taken by cameras mounted on vehicles. Critical AV functions 

including object detection, lane detection, and scene understanding, all necessary for safe 

navigation in challenging driving environments, require this capacity. Furthermore, CNN 

architecture developments like Faster R-CNN [37] and other real-time hybrid frameworks [38] 

guarantee that the models continue to be effective and responsive, which are essential 

qualities required for obstacle avoidance and real-time navigation.  

Multilayer Perceptron: MLPs are a fundamental neural network architecture that finds broad 

application in various machine learning applications, including those in the domain of AVs. As 

feed-forward neural networks, MLPs consist of multiple layers of neurons, including input, 

hidden, and output layers, that are connected through weighted links. It is this structure that 

enables MLPs to learn complex, non-linear relationships in data, making them useful for 

applications like trajectory [39] and motion prediction [40].  

Recurrent Neural Network: RNNs specifically designed to deal with sequential data by 

maintaining a hidden state that preserves temporal dependencies, which are very important in 

tasks such as lane change prediction [41], [42] and path prediction [43]. The RNN structure 

enables them to capitalize on previous information from input sequences, thus supporting the 

modeling of time-series data, which is a common characteristic in autonomous driving 

scenarios. 

However, standard RNNs do not do well with long-term dependencies due to issues like the 

vanishing gradient problem. As a specific type of RNNs, Long Short-Term Memory (LSTM) solves 

such constraints by possessing a sophisticated gating mechanism to retain and forget 

information over long periods of time. This makes LSTMs perfectly suitable for tasks based on 

memory spanning long sequences of information. A couple of works [44], [45] have applied 

LSTM to AV-related challenges.  

Transformers: Transformer [46] architecture and its variant, Vision Transformer (ViT) [47] have 

emerged as powerful alternatives to traditional RNNs and CNNs. One of the most important 

advantages of using Transformers in FL settings is their attention mechanism, which allows the 

model to dynamically focus on the most relevant parts of the input sequences. This 

functionality is particularly helpful in AV use cases where some elements of the environment 

surrounding us, captured with various sensors, can vary extensively in importance depending 

on the context (e.g., pedestrian detection in a city vs. road sign detection on the highway). 
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Transformers have been applied to the field of AVs, for tasks such as sensor fusion [48], 

computer vision [49], decision making [50], and anomaly detection [51].  

Autoencoders: Autoencoders [52] and Variational Autoencoders (VAEs) [53] are utilized 

primarily on tasks such as dimensionality reduction, feature extraction, and data generation. 

Autoencoders consist of two main elements: an encoder that transforms the input into a lower-

dimensional latent space, and a decoder that reconstructs the input from the latent space. This 

architecture enables the model to learn low-dimensional representations of the input data such 

that AVs are able to extract salient features from high-dimensional data and sensor 

observations. Autoencoders have been used for tasks like anomaly detection [54], [55], and 

attack detection [56] in AVs.  

On the other hand, VAEs extend the basic autoencoder model by incorporating probabilistic 

elements into the latent space. VAEs facilitate learning a distribution over the latent 

representations, which allows for more flexible generation of new data samples related to the 

training sample. VAEs have been used for path [57], [58] and trajectory [59], [60] prediction, 

and decision-making [61] tasks within AV environments. 

Despite the promising potential of ANN models in FL settings, there are certain challenges to be 

addressed if FL is to be applied in AV environments. One of the most severe challenges is data 

heterogeneity and trustworthiness. 

Data heterogeneity refers to variations in the structure, format, and distribution of data across 

diverse AVs. Such heterogeneity would significantly hinder the deployment as well as operation 

of collaborative model training. One major issue is the non-uniformity of data volume and 

quality [62], [63] which can cause uneven client contribution and participation in the FL process. 

This non-uniformity will then undermine the fairness and representativeness of the resulting 

global model. Moreover, heterogeneous data attributes (e.g. varying feature distributions, data 

modalities, and domain-specific features) may introduce compatibility problems within the 

process of model aggregating and combining local model updates. Such problems may impede 

the uniform integration of heterogeneous data sources into the global model, impacting its 

overall accuracy and generalization capability over heterogeneous AV environments adversely. 

Aside from heterogeneity, data reliability is yet another factor of major concern in the proper 

deployment of FL [64]. Since FL is based on multiple parties collaboratively training a global 

model without sharing local data, the trustworthiness of such local data inputs is important. If 

the information being delivered by cooperating devices is compromised or not trustworthy, 

whether due to attacks such as spoofing or abnormal sensor or communication channel 

behavior, it can contribute to the convergence of incorrect models, undermining the 

performance of the FL framework in AV environments. Additionally, issues of trust in both the 
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shared model and local training data, especially across heterogeneous and potentially 

untrusted AV devices, compound privacy and security concerns. Therefore, it becomes essential 

to develop effective mechanisms for authenticating and ensuring the reliability of data 

originating from various sources. Only then can the data become reliable, when FL is able to 

develop its full potential towards enhancing the intelligence, security, and efficiency of AVs. 

4.2.2. Federated Learning Security and Privacy 

Although FL has received significant attention in recent years for its ability to preserve data 

privacy, FL alone cannot guarantee mitigation of privacy concerns due to the risk that model 

updates exchanged during the learning process might leak sensitive information. Furthermore, 

FL communications are susceptible to poisoning, gradient inversion, and spoofing attacks, to 

name a few [65].  Review of some FL privacy and security threats are available in [66], and [67]. 

Therefore, additional layers of security are required in order to further safeguard FL systems so 

that the integrity of the learning process is preserved, as well as the confidentiality of the data 

of the participants. To satisfy the mentioned goals, Homomorphic Encryption (HE) is a privacy 

method that is often applied in FL to prevent information leakage while sharing parameters 

between clients. This method encrypts parameters prior to performing an addition or 

multiplication operation, and the results of the FL model (e.g. accuracy, precision, recall) are 

the same as for a non-encrypted function [68]. In HE-supported FL, key-pair is synchronized on 

all end-nodes using a secure channel [69], [70]. Initially, all the end-nodes encrypt their local 

model gradients and send the ciphertexts to a central FL server. Then the server performs the 

model update using the encrypted gradients and then provides the aggregated model to the 

end-nodes. The benefit of using HE is that there is no need for decryption at the FL server.   

HE is divided into three general categories namely partially HE, somewhat HE, and fully HE [71]. 

These types of HE offers flexibility of performing mathematical operations depending on the 

type used. For instance, partially HE accommodates only one type of mathematical operation, 

whereas full HE accommodates many different types of mathematical operations [72]. A couple 

of papers [73], [74], [75] have applied HE to secure FL models for AV environments. However, 

HE usually results in the use of extra computation and communication resources [72]. In AV 

environments, sensors like radar, Lidar, camera, GNSS, as well as ECU, typically operate with 

limited computational resources, and bounded storage capacity. Executing resource-consuming 

ML models and repeated training iterations can strain these scarce resources significantly, 

greatly compromising FL's efficiency and usability [76]. This difficulty is further exacerbated by 

the inclusion of privacy-preservation mechanisms such as HE, which, while a required measure 

for safeguarding personal data in FL, has large computational and communication overhead. 

HE-based FL systems need many times more computational resources and memory for 
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computing encrypted data. These computations not only contribute to the local processing 

burden but also increase the size of model updates, leading to more bandwidth consumption. 

For the AVs, this additional overhead might result in longer training time, less complex and 

accurate ML models, and higher energy consumption, degrading the sustainability and 

scalability of FL within AV environments.  

In addition, the local storage space of such devices may restrict the volume and intensity of 

data that can be made accessible to the local training process, reducing the effectiveness of the 

global model. In highly heterogeneous AV environments, device settings with very different 

capabilities, the construction of an FL framework in which the lowest-capability members are 

served without degrading overall system performance while preserving the security and data 

privacy of the FL framework is a challenging task.  

4.2.3.  Future Contributions 

Although there is a huge potential in ANN models for FL settings, their actual achievement in 

the complete potential in AV environments requires a shift from hypothetical security layers to 

actual, efficient, and operationally viable FL frameworks. The following are the key factors for 

the development of an actually secure and privacy-preserving FL model for AVs. Ignoring these 

renders the very reason for FL collapse, and any other security approach becomes irrelevant.  

Computation is constrained by design in AV environments. Radar, LiDAR, cameras, and GNSS 

sensors feed inputs to already heavily loaded ECUs with real-time processing needs. Traditional 

FL systems, especially HE-based ones, are too computationally intensive. Future work must 

cater to lightweight FL algorithms which are not only efficient computationally but also privacy-

oriented in a way that they can be executed without taxing local resources. Without efficiency, 

model training becomes either futile or excessively delayed, making the effort of ensuring the 

process a waste of time. UNIGE has been exploring different lightweight ANN and FL 

architectures to solve this issue, and the results will be presented in the next version of this 

deliverable.  

Optimization of Heterogeneous data  

As mentioned earlier, data heterogeneity caused by differences in sensor settings, 

environments, driving styles, and hardware configurations is not a phenomenon, but the nature 

of AVs. Such heterogeneity results in asymmetric participation and varying data quality, 

threatening fairness, accuracy, and convergence of global FL models. Therefore, FL algorithms 

must be specifically designed for heterogeneous setups with provisions for fair contribution and 

robust model fusion. Again, acquiring an FL method that cannot handle heterogeneity is a 

waste because its outcomes will always be faulty.   
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Communication-Efficient Techniques  

Communication bandwidth is another finite shared resource for AV networks. Ongoing 

transmission of large encrypted model updates, especially with HE, invites high communication 

cost and energy usage. Without optimization, it will create latency and resource limitations, 

reducing the useability of FL. Thus, developing communication-efficient techniques, such as 

update compression, and attention-based models, is crucial. These techniques ensure timely, 

reliable, and secure communication while maintaining the integrity of the FL process without 

exhausting bandwidth.  

Robust and Secure Aggregation Mechanisms  

As mentioned before, FL depends on the process of aggregating a series of AV updates, and 

therefore strong and secure aggregation is necessary. The process must be robust to poisoned 

or abnormal updates and furthermore resistant to attacks like model inversion and leakage of 

gradients. However, secure aggregation is only possible when the received model updates are 

representative and legitimate. Future research must focus on aggregation methods that can 

handle client-side trustworthiness, data disparity, and hostile action, with a focus on scalability 

and privacy. This includes exploring Differential Privacy (DP), and verifiable computation 

techniques.  

Attack and Anomaly Management on Client-Reported Data  

The performance of FL models depends entirely on the trustworthiness of client inputs. With an 

AV network, the risk of compromised or manipulated AVs, spoofed sensors, false updates, or 

even malfunctioning hardware can all threaten model accuracy. An active response, therefore, 

to managing anomalies (including forecasting, detection, and mitigation), and assessing trust is 

critically important. Future work must incorporate techniques such as behavioral modeling, 

detection of outliers, and adversarial testing in order to monitor and verify the validity of local 

updates on an ongoing basis. Otherwise, FL models will find themselves in suboptimal or even 

dangerous states, rendering any security or privacy guarantee void. 

In the following Section, we will actually demonstrate how privacy preservation, and more 

specifically HE, impact directly on the external monitoring system of an AV. 

4.3. Enhancing the security and privacy of external sensing system 

4.3.1. Federated Deep Unrolling for LiDAR Super-Resolution Using Homomorphic 

Encryption 

With the continuous progress made over the years, a lidar-centric perception system is 

expected to mature in terms of model-based processing algorithms while satisfying at the same 
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time requirements for the majority of AVs such as precise localization and accurate mapping of 

unknown surroundings. AVs frequently operate in environments characterized by constant 

changes, posing challenges to the creation of consistent maps. For instance, self-driving cars 

must possess the capability to consistently locate legal parking spots and identify safe 

passenger exit points, even in previously unexplored locations that lack accurate mapping data. 

The emergence of adaptive federated optimization in the field of CAVs has the capacity to 

transform such Lidar Based Simultaneous Localization and Mapping (SLAM) solutions [77], [78], 

[79]. 

Building on this line of thought, federated learning [80] can serve as a continual learning 

methodology enabling collaboration between trusted agents and respecting at the same time 

privacy concerns.   Here, we aim to combine federated learning methods with analytical and 

well-justified optimization-based methods, similar to the methods resented in Deliverable 3.1. 

This novel combination offers the advantages of both worlds: high performance due to the data 

offered by a number of cooperating agents as well as low computational complexity and 

explainable model architectures.  

Federated Learning in Automotive Domain 

Although the Federated Learning framework has been extensively explored in numerous 

disciplines, e.g., signal processing, medical processing, its application in the autonomous driving 

domain remains under-investigated [80], [81], [82]. The current body of literature contains a 

limited number of works that investigate the benefits of FL in autonomous driving. For instance, 

study [83] used the FL scheme to examine the object detection problem in autonomous driving 

scenes. Additionally works in [84], [85] proposed methods for predicting the wheel steering 

angle in AVs under the FL scenario. Our study differentiates from the existing literature in two 

important aspects. Firstly, we explore the novel problem of deep unrolling-based lidar super-

resolution from a federated learning perspective, which has not been previously examined. By 

capitalizing on the distributed nature of federated learning, our approach enables the 

utilization of private lidar data gathered from diverse AVs operating in different environmental 

conditions in order to improve the lidar slam solutions. Secondly, and more importantly, we 

propose a novel federated learning scheme based on the proposed deep unrolling formulation. 

We argue that the well-justified structure of the deep unrolling model can be fully utilized by 

the Federated learning strategy.  
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4.3.2. Federated Deep Unrolling Method 

In this Section, we formulate a novel Federated Deep Unrolling methodology (i.e., FL-DU). 

Inspired by the distributed parameter estimation approaches [86], we argue that the proposed 

FL framework can be expressed as an ATC strategy. More specifically: 

Federated Deep Unrolling Framework 

To mathematically establish the Federated Deep Unrolling (FL-DU) framework, we consider a 

network of  𝑁 edge devices (or agents) participating in the learning process. Each device is 

identified by an index 𝑛 within the set 𝑁 = 1,2, … ,𝑁, and holds a local dataset 𝐷𝑛 = {𝑿𝑛, 𝒀𝑛}. 

In this setup, 𝑿𝑛  denotes the high-resolution range images, while 𝒀𝑛  represents the 

corresponding low-resolution range images. To simplify the notations, we assume that each 

local dataset is composed of one pair of high- and low-resolution range images.  

 

 
Figure 65: Proposed Deep unrolling model. In particular, a small number of iterations, say 𝐾, of the a local HQS solver in Eq. 40 

are unrolled and treated as a deep learning architecture. Each iteration of the iterative solver is considered a unique layer of the 
proposed model, resulting in a K-layer deep learning architecture. 

Each agent aims to solve a local optimization problem utilizing the proposed problem 

formulation for the Lidar super-resolution, defined as follows: 

 
argmin

𝑿𝑛

1

2
‖𝒀𝑛 − 𝑺𝑿𝑛‖𝐹

2 + 𝜇𝑛𝑅𝑛(𝑿𝑛)   
       Eq. 36 

where 𝑅𝑛(·) denotes to the learnable regularizer corresponding to the 𝑛-th agent.  

The fact that the local agents utilize only their local data to address the proposed optimization 

problem may produce a local regularizer (prior) that is not able to generalize well in various 

environmental conditions. Thus, this limitation may result in a local learnable regularizer (𝑅𝑛(·)) 

that is only limited to capture dependencies of the range images generated from the local 

distribution. To efficiently overcome this, the proposed federated deep unrolling framework 

allows agents to collaborate under the orchestration of a central server. Through this 

collaboration, they are able to learn a more robust regularizer, or prior, which exhibits greater 

generalization capabilities across diverse conditions.  
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The goal of the server in this context is to solve the sum of the local optimization problems, i.e., 

 
∑(
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‖𝒀𝑛 − 𝑺𝑿𝑛‖𝐹
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2) +∑(𝜇𝑛𝑅𝑛(𝑿𝑛)) 

𝑁

𝑛=1

 

𝑁

𝑛=1

  

 
 
Eq. 37 

The optimization problem presented in Eq. 37 consists of two terms. The first term, known as 

the data consistency term, requires access to each agent’s private local datasets. This part is 

crucial in maintaining the accuracy of the optimization. However, direct access to this local 

private data may raise privacy concerns. The second term represents the sum of the learnable 

regularizers corresponding to each agent. These regularizers are expressed as neural networks 

that capture the underlying structure in the data. Importantly, while the regularizers are 

learned using local data, they don’t expose sensitive information. This makes them suitable for 

sharing with the server, which facilitates global optimization without compromising privacy. 

In light of this, the proposed federated deep unrolling framework can be expressed as an ATC 

strategy [87], taking into account the above optimization formulation. Given the interpretable 

structure of the deep unrolling model, the proposed framework consists of two steps: 

adaptation and combination.  

In the adaptation step, each agent aims to solve the optimization problem defined in Eq. 36. 

This step is designed to solve the proposed local optimization problem using the deep unrolling 

strategy and adapting the respective DU models to the specific characteristics of the local 

datasets from each AV (agent).  

In the combination step, the focus is on merging the local learnable regularizers obtained from 

the deep unrolling models. This process results in a more powerful and robust global regularizer 

that effectively incorporates the information gathered from a diverse range of Avs operating in 

different environmental conditions. By combining the local regularizers, the overall 

performance and generalization capabilities of the federated learning framework are enhanced.  

The proposed approach provides the deep unrolling-based federated learning a clear and 

interpretable structure. The role of FL is to facilitate the merging of local learnable regularizers 

without compromising the privacy of individual datasets. 

Adaptation Step 

In the proposed approach, the adaptation step takes place within the local devices. Focusing on 

the devices’ side, at the t-th communication round each device 𝑛 aims to solve the following 

optimization scheme (see, also Eq. 36), i.e., 
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argmin

𝑿𝑛

1

2
‖𝒀𝑛 − 𝑺𝑿𝑛‖𝐹

2 + 𝜇𝑛𝑅𝑛(𝑿𝑛)   
       Eq. 38 

 

where 𝑅𝑛(·) denotes to the learnable regularizer corresponding to the 𝑛-th agent.  

Each agent 𝑛 employs the Half quadratic splitting (HQS) methodology to tackle the local 

optimization problem in Eq. 38, thus forming the following local objective function: 

 
𝐿𝑛 =

1

2
‖𝒀𝑛 − 𝑺𝑿𝑛‖𝐹

2 + 𝜇𝑛𝑅𝑛(𝒁𝑛) +
𝑏𝑛
2
‖𝒁𝑛 − 𝑿𝑛‖𝐹

2  
       Eq. 39 

The solution of this optimization problem consists of two interpretable modules that is that is 

the data consistency solution for estimating the high-resolution range image Eq. 40 and the 

denoising step in Eq. 41. Thus, at each communication round t, the local device n solves the 

following iteration map 

 𝑿𝑛
(𝑘+1) = (𝑺𝑇𝑺 + 𝑏𝑰)−1(𝑺𝑇𝒀𝑛 + 𝑏𝒁𝑛

(𝑘))        Eq. 40 

 

 𝒁𝑛
(𝑘+1) = 𝑓𝜃𝑛(𝑿𝑛

(𝑘+1))        Eq. 41 

 

Local Deep Unrolling model: However, instead of solving the above iterative map for a large 

number of iterations, each device employs the deep unrolling strategy, thus unrolling a small 

number of K iterations and creating a K-layer deep architecture, as depicted in Figure 65. Having 

formed the local deep-unrolling model the device n employs some version of the stochastic 

gradient descent to train it end-to-end using some loss function.  

Combination Step 

After all participating edge devices 𝑛 ∈ 𝑁 have updated their local deep unrolling models, the 

next step is the combination step. The objective of this step is to learn an appropriate 

regularizer (prior) that captures the unique characteristics of the range images by utilizing local 

information from the agents. Due to the structure of the local DU models, the devices only 

upload to the server the neural network 𝑓𝜃𝑛(·) responsible for the denoising process in Eq. 41. 

Subsequently, the server combines all the local denoisers using a fusion rule, as follows: 

 
𝑓𝜃𝑔 = ∑𝑎𝑛𝑓𝜃𝑛  

𝑁

𝑛=1

 
        
        Eq. 42 
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where 𝑓𝜃𝑔  denotes the global denoiser (regularizer) and 𝑎𝑛 stand for combination weights. 

Consequently, the server transmits the global denoiser back to the local devices. These devices 

initialize the denoisers of the local deep unrolling models (i.e., Eq. 41) with the received global 

denoiser. This procedure is repeated for 𝑇 communication rounds. Hence, the FL-DU algorithm 

can be written as an agent Adaptation step, which involves the local data consistency term (Eq. 

43) and the local denoiser (Eq. 44) (solved by unrolling these equations using the proposed 

deep unrolling strategy) and a Combination step (Eq. 45): 

 𝑿𝑛 = (𝑺𝑇𝑺 + 𝑏𝑛𝑰)
−1(𝑺𝑇𝒀𝑛 + 𝑏𝒁𝑛

(𝐾))        Eq. 43 

 

 𝒁𝑛 = 𝑓𝜃𝑛  (𝑿𝑛)         Eq. 44 

 

 
𝑓𝜃𝑛  = ∑𝑎𝑛𝑓𝜃𝑛  

𝑁

𝑛=1

 
       Eq. 45 

 

Figure 66 illustrates the proposed FL-DU framework. 

4.3.3. Experiments and Evaluation Study 

To evaluate the effectiveness of the proposed federated deep unrolling framework, a series of 

experiments were carried out in the context of LiDAR super-resolution. The aim was to upscale 

data from a 16-channel LiDAR to a 64-channel LiDAR by a factor of 4. Furthermore, we assessed 

the benefits of our proposed method on a LiDAR SLAM system based on the LeGO-LOAM 

algorithm [87]. The LiDAR SLAM experiments were conducted on a developed simulation 

framework.  

Dataset 

Regarding the training, we employed the same dataset presented in study [88]. A 64-channel 

lidar, OS-1-64, was simulated in the CARLA Town 1 and Town 2 scenes, matching the Ouster 

dataset field of view (33.2°). For the same scene, a 16-channel lidar, OS-1-16, was simulated to 

generate low-resolution point clouds. Both high- and low-resolution point clouds were 

projected onto range images [89], resulting in 7000 pairs of 64x1024 and 16x1024 images. The 

images were then normalized to a range of 0-1 for training. Testing Data: To validate the 

performance of the proposed FL architecture, the real-world Ouster lidar dataset was utilized. 

This dataset comprises 8825 scans collected over a 15-minute drive in San Francisco using an 

OS-1-64 3D lidar sensor.  
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Figure 66: Proposed end-to-end Deep unrolling-based Federated Learning approach. This strategy contains two key parts i.e., 
the adaptation and the combination step. In the adaptation step, each agent updates its local deep unrolling model using the 

local data consistency term and the local denoiser. This process ensures adaptation to the specific characteristics of the agent’s 
dataset. In the Combination part, the server combines the outputs of all local denoisers. This creates a global denoiser 

(regularizer) that captures knowledge from diverse local datasets. 

Implementation Details 

Federated Learning Scenario: In our experiment, we examined a network made up of AVs, each 

functioning as a distinct agent. The training data previously mentioned was partitioned into 5 

unique blocks. Each block was sourced from different locations within the CARLA simulator, 

thereby representing varied environmental conditions.  

During the local training on the edge devices, we utilized 5 epochs with a learning rate of 1e − 

04 and a batch size of 6. Additionally, we determined the number of communication rounds 

between the central server and the edge devices to be T = 50. The local models were trained 

using Adam Optimizer. 

3) Secured Federated Learning: In literature, several studies have explored the use of privacy-

preserving techniques such as Homomorphic Encryption [90], [91], [92] within the realm of 

classical federated learning. Our goal is to demonstrate how security mechanisms, such as 

Homomorphic encryption, can be easily integrated to enhance the security of the proposed 

Federated deep unrolling method, without negatively affecting the models performance. To 

this end, we used homomorphic encryption based on the Tenseal library [93]. In the context of 

the proposed federated deep unrolling system, multiple vehicles collaborate to improve a 

global model during the combination step, while keeping their training data local. However, 

sharing information between these agents or with a central server can lead to potential privacy 
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breaches. Herein lies the importance of using HE. It enables each client to encrypt their trained 

denoiser (prior) parameters before sending them to a central server for aggregation. Thus, the 

agents need to encrypt only the denoising step in Eq. 44 from their local deep unrolling models. 

Due to the special properties of HE, the server can perform computations directly on these 

encrypted parameters to generate an encrypted global model. This method ensures that the 

server, while able to aggregate the model updates and further distribute them, never has 

access to the raw data or individual model parameters, maintaining the privacy of each 

participant in the federated deep unrolling process. Finally, even though the aggregated 

encrypted model is then decrypted, the privacy is still preserved since vehicles have access only 

to the aggregated model not the individual ones.  

LiDAR Super-Resolution Performance on Raw Data: Federated Learning Approach 

To thoroughly evaluate the advantages and possibilities of our proposed federated deep 

unrolling framework, called FL-DU with and without the homomorphic encryption part, we 

compare it with the following approaches: 

• Centralized-DU: This represents our deep unrolling model used in a centralized 

context, where a central server gathers data from distributed edge devices to train 

the lidar super-resolution model. 

• Centralized-SRAE: Since the SRAE method [88] was found to be the top-performing 

competitor, we include it in our comparison. 

• FL-SRAE: Additionally for completeness purposes, we also consider a straightforward 

federated learning scenario [94], where edge devices utilized the deep neural 

network proposed in study [88]. 

 
Figure 67: L1 loss of the derived global model from the proposed deep unrolling FL scheme with and without homomorphic 

encryption vs communication rounds along with the best accuracy achieved by the centralized deep unrolling model. 
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Figure 68: Loss of the derived global model from the proposed deep unrolling FL scheme with and without homomorphic 
encryption vs communication rounds against the classical federated learning framework with the SRAE model denoted as FL-

SRAE. 

Table 11: Quantitative Results- Federated Learning 

Dataset Method Data training 
size 

L1 loss 

 proposed FL-DU with encryption 700 per client 0.0211 

 proposed FL-DU 700 per client 0.0210 

 FL-SRAE 700 per client 0.0357 

Ouster proposed centralized-DU 7000 0.0208 

 centralized-SRAE 7000 0.0214 

 

Comparison with the centralized methods: As we can see from Figure 67 and Table 11 the 

proposed FL-DU method is able to achieve similar performance against the centralized solution. 

Crucially, the proposed method necessitates only a limited number of communication rounds 

between the server and local agents, along with a mere five epochs of local training per round, 

to converge effectively to the centralized solution. Another important aspect that stems from 

the proposed federated unrolling strategy is the fact that we can incorporate any privacy 

preserving strategy. Interestingly, the FL-DU with the homomorphic encryption achieves the 

same convergence behavior as compared to the FL-DU without the encryption part. 

Comparison proposed FL-DU with the federated learning methods: As illustrated in Figure 68 

and Table 11, the proposed FL-DU method considerably outperforms the comparative 

federated learning approach that uses a state-of-the-art deep learning model. This superiority is 

observed in both accuracy and convergence rate. Notably, our method achieves similar results 

to the centralized solution while requiring fewer communication rounds.  

Impact of LiDAR Super-Resolution on LiDAR-based SLAM Approaches 
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In order to thoroughly assess the effectiveness of our proposed deep unrolling model, along 

with the federated learning approach, we examined its applicability in a real-world automotive 

scenario. To do this, we utilized the LeGO-LOAM [87] system, which is a Lidar based SLAM 

mechanism that offers real-time six-degree-of-freedom pose estimation and a generated 3D 

map. We tested it on two sequences from the Ouster dataset:   

• The first sequence consists of 2600 consecutive scans, representing a relatively simple 

trajectory followed by the vehicle.  

• The second sequence is composed of 6000 scans that correspond to a more challenging 

trajectory with short, closely spaced loops. 

 

Table 12: LiDAR SLAM: Absolute Pose Error w.r.t Translation Part (m). 

 Ouster: 2600 scans Ouster: 6000 scans 
Metrics Lidar-

16 
centralized 
SRAE  

proposed 
centralized-
DU 

proposed 
FL-DU 

FL-
SRAE 

Lidar-
16 

centralized 
SRAE  

proposed 
centralized-
DU 

proposed 
FL-DU 

FL-
SRAE 

Mean 6.84 15.97 3.86 4.39 39.2 299.90 48.29 26.06 31.54 110.47 

Mse 8.52 18.52 4.42 4.74 35.12 316.82 61.73 27.85 33.20 135.78 

max 23.61 43.04 15.69 10.02 71.60 479.02 183.42 51.33 52.15 389.45 

 

To investigate the influence of the Super Resolution (SR) approach on such a SLAM system, we 

conducted a performance comparison of the LeGO-LOAM algorithm using for distinct inputs: 

• High-resolution 3D point clouds reconstructed with the proposed centralized-DU 

method 

• High-resolution 3D point clouds reconstructed using our proposed FL-DU approach. In 

this case, we solely utilized the federated learning scenario with homomorphic 

encryption, as our findings demonstrated that it achieved practically the same 

performance as the corresponding federated learning scenario without the encryption 

part. In more detail, the point clouds were reconstructed using the derived model from 

the 50-th communication round of the FL-DU framework.  

• low-resolution 3D point clouds generated by a 16-channel lidar sensor  

• High-resolution 3D point clouds reconstructed using the centralized SRAE method [88].  

• High-resolution 3D point clouds reconstructed using the Federated Learning method 

that uses the deep learning model of the SRAE method [94]. 
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For our analysis, we employed error metrics from earlier studies [95], [96]. The results, 

including the output metrics, the cumulative distribution function (CDF) of Absolute Pose Error 

(APE) translation, and trajectory heatmaps, are presented in Table 12. The reference pose 

(trajectory) for these results is derived from a 64-channel lidar. In our analysis, we observe that 

both the proposed centralized-DU and FL-DU methods consistently outperform the 16-channel 

lidar and the SRAE [94]. across all the examined trajectories. This highlights the superior 

accuracy of our reconstructed 64-channel lidar data compared to the state-of-the-art SRAE 

method [88] and the FL-SRAE approach. Additionally, although the 16-channel lidar provides 

satisfactory results during the simple trajectory (2600 scans), in the more challenging trajectory 

(6000 scans), which contains close loops, the 16-channel lidar is not able to follow the reference 

trajectory. This can be justified by the fact that the LeGO-LOAM method relies on the 

availability of the edge and planar features to estimate the vehicle transformation, and thus it 

fails to generate robust features from the sparse point cloud derived from the 16-channel lidar.  

In comparison to the traditional federated learning approach (i.e., FL-SRAE), our proposed 

Federated Deep Unrolling framework consistently demonstrates superior results across both 

trajectories. It’s important to note that the local models used in the FL-SRAE approach consist 

of more than 30 million parameters. This not only imposes significant communication 

constraints but also necessitates an extensive and diverse set of training examples for these 

models, which local agents often lack, resulting in subpar performance.  

4.4. Concluding remarks 

This section has outlined the critical role of privacy and data trustworthiness in the 

development and deployment of AV systems, considered in the frame of AutoTRUST. As AVs 

increasingly rely on high-resolution sensor data and distributed machine learning techniques, 

such as Federated Learning, ensuring secure, ethical, and efficient data handling becomes 

imperative. To this end, it has been examined how FL can address privacy concerns by enabling 

collaborative model training without sharing raw data, while also highlighting the limitations 

posed by data heterogeneity, trustworthiness, and computational constraints. The integration 

of Homomorphic Encryption further strengthens privacy but introduces significant resource 

demands that must be carefully managed, especially in resource-limited AV environments. 

Moreover, the section has introduced a novel Federated Deep Unrolling framework, combining 

optimization-based modelling with deep learning in a privacy-preserving, communication-

efficient manner. By aligning technical innovation with ethical and legal safeguards, AutoTRUST 

contributes to a future where autonomous systems are not only intelligent but also trusted and 

accountable. 
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5. Conclusion 
This deliverable has presented a comprehensive overview of the design, implementation, and 

initial validation of the advanced internal and external sensing systems developed within the 

AutoTRUST project. The solutions detailed herein demonstrate significant progress in realizing 

safe, user-centric, and resilient autonomous mobility, addressing both technical innovation and 

practical deployment challenges. 

The internal sensing system integrates advanced multi-modal perception for real-time 

monitoring of occupant state, behavior, and comfort, including robust approaches to driver 

distraction detection, emotion recognition, and in-cabin environmental quality. The adoption of 

privacy-preserving methodologies and efficient edge computing ensures that user data is 

protected without compromising performance or responsiveness. 

The external sensing system introduces reliable and interpretable scene understanding, with 

capabilities for precise road condition assessment, hazard detection, and cooperative 

awareness through V2X communication. The use of distributed and federated learning 

frameworks further enhances system robustness and data privacy, enabling vehicles to 

collaboratively improve perception and localization without sharing raw data. 

A major strength of the work presented is the holistic integration of privacy, security, and 

ethical considerations throughout all system layers. Advanced encryption, secure aggregation, 

and local data processing are combined with ongoing risk assessment to support regulatory 

compliance and user trust. The validated architectures and methodologies described in this 

deliverable provide a solid foundation for the next stages of the project, including large-scale 

pilot deployments, further integration with user feedback, and continued optimization for real-

world conditions. Moving forward, the focus will be on expanding evaluation in diverse 

operational scenarios, strengthening the adaptability of the sensing modules, and ensuring 

alignment with the evolving needs of all road users. 

In summary, D3.2 sets a new benchmark for advanced sensing in connected and automated 

mobility, delivering modular, scalable, and trustworthy solutions that underpin the AutoTRUST 

project’s vision of inclusive and reliable autonomous transport systems. Finally, the second and 

final version of the sensing technologies, along with associated data privacy and 

trustworthiness aspects, will be described in D3.4 “Advanced internal and external sensing 

system.v2”, due to M29.  
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